SONDERSEMINAR

am:	Freitag, 11.6.2010
Uhrzeit:	10:00 Uhr s.t.
spricht:	Prof. Berge Englert Centre for Quantum Technologies and Department of Physics National University of Singapore
Titel:	State Tomography and Entanglement Witnesses
Ort:	Schellingstr. 4/ III. St., Raum H311 D-80799 Mnchen

Harald Weinfurter

Abstract

Symmetrical informationally complete probability operator measurements (SIC-POMs) enable neat and efficient state tomography -- in theory, that is. In practice, no one uses SIC-POMs for the tomography of qubit-pair states because it is so much easier to implement product POMs, with a POM for each of the qubits, possibly of the SIC kind. Perhaps it is worth the trouble to go for a full-blown SIC-POM nevertheless? The answer is: Hardly. But there is another use for SIC-POMs. They constitute a minimal set of entanglement witnesses that provide tomographically complete information, and thus answer a ten-year old question: How many witnesses need to be measured to decide whether an arbitrary state is entangled or not? The SIC-POM answer is: As many as the dimension of the state space. With a clever use of the data acquired when measuring a witness, however, the number of witnesses can be reduced by much. I will describe how just that can be done quite easily with existing linear-optics technology for two polarization qubits.