SONDERSEMINAR/Special Seminar MPQ/LMU

am:	Freitag, 26. Juli 2013
Uhrzeit:	10:00 Uhr s.t.
spricht:	Dr. Carsten Schuck Department of Electrical Engineering Research Group Prof. Tang Yale University 15 Prospect St. New Haven, CT 06511 USA
Thema:	High Efficiency, Low-Noise Superconducting Nanowire Single-photon Detectors Integrated with Nanophotonic Circuits
Ort:	Lehrstuhl Prof. T.W. Hänsch, Diskussionsraum Schellingstr. 4/ III. St., Raum H311,D-80799 München
gez. Prof. T.W. Hänsch	

Abstract

High Efficiency, Low-Noise Superconducting Nanowire Single-photon Detectors Integrated with Nanophotonic Circuits

High detection efficiency, low dark count rate and accurate timing resolution are the most desired features of a single photon detector. For quantum optical information processing it is furthermore highly desirable to integrate detectors and optical circuitry on one common and scalable platform. Here I will present how these requirements can be achieved with NbN and NbTiN nanowire superconducting single-photon detectors (SSPD) embedded in nanophotonic waveguides on a silicon chip for visible and infrared wavelengths. Employing a travelling wave design we realize up to 90% detection efficiency for single-photons in the telecom band. By engineering the detector and waveguide dimensions at the nanoscale we furthermore demonstrate sub-nanosecond electrical output pulses with timing jitter below 50 ps and milli-Hz dark count rates, resulting in a noise equivalent power in the 10^{-19} - 10^{-20} W/(Hz^{1/2}) range. I will present two applications of our integrated nanowire SSPDs:

Firstly, we show how to exploit the detectors' high temporal resolution to resolve individual photon round trips in silicon ring resonators for time-domain multiplexing. Secondly, we perform photon-counting optical time domain reflectometry (OTDR) over 263 km of standard telecom fiber to illustrate the low noise performance of our detector. The integration of such ultrafast, high-efficiency superconducting single-photon detectors with low-loss optical waveguide devices on a single chip is an ideal match for scalable quantum photonic circuitry.