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I. INTRODUCTION

Being the simplest of all stable atoms, the hydrogen atom is a crucial test object for a number of different funda-
mental theories. Its atomic properties can be calculated with unprecedented accuracy. At the same time, the level
structure can be accurately probed using spectroscopy methods in the visible, near-IR and near-UV spectral regions.
Almost a century ago, such tests gave birth to quantum physics clearly underlining the importance of high-resolution
spectroscopy methods [1]. Today, the hydrogen atom plays an important role in determining fundamental constants
and atomic parameters. During the last decade spectroscopic experiments on hydrogen and deuterium atoms have
yielded new accurate values for the Rydberg constant [2], the ground-state Lamb shift [3], the deuteron structure
radius [4], and the 2S hyperfine structure [5, 6]. Measurements of the Lamb shift and the 2S hyperfine structure
permit sensitive tests of quantum electrodynamics (QED), which are based on comparisons between experimental val-
ues and results from corresponding QED calculations (for review see [7, 8]). Moreover, combining optical frequency
measurements in hydrogen with results from other atomic systems, stringent upper limits for a possible slow variation
of the fine-structure constant have been derived [9].

The employment of frequency combs turned high-precision optical frequency measurements into a routine procedure,
readily available for a broad scientific community [10, 11]. The unprecedented accuracy of the frequency comb
combined with the development of new ionic, atomic and molecular optical frequency references have opened wide
perspectives for optical atomic clock applications in metrology, navigation and fundamental physics.

Continuous progress in optical frequency standards allows not only for more accurate tests of established theories,
but also opens the possibility for new sensitive tests, that touch a broad variety of fundamental problems. Quantum
electrodynamics which describes electromagnetic interactions on a quantum level, has not yet encountered discrepan-
cies with experimental results. The theory of electro-weak interactions treats electromagnetic and weak interactions as
two aspects of a unified interaction. The strong interactions can be adequately described within the theory of quantum
chromodynamics. All of them operate with the fixed number of parameters (fundamental constants) which cannot
be calculated within these theories. It is believed that at very high energies these theories can be unified in form of
a grand unified theory (GUT). In this case the coupling constants will merge into a unified coupling constant αGUT

(see e.g. [13]). The theories of electromagnetic, weak and strong interactions are all based on Einstein’s equivalence
principle which does not allow a spatial or temporal variation of the coupling constants.

On the other hand, attempts to unify electromagnetic, weak and strong interactions with gravity encounters severe
difficulties. To build such a “theory of everything” it seems that one has to extend the number of dimensions of our
usual time-space world. For example, the Kaluza-Klein theory operates in the five-dimensional world, while string
theories use up to 11 dimensions. The believe is that additional dimensions are compactified, so that the universe
extends in these extra dimensions for only about the Planck length LPL =

√
Gh̄/c3 ≈ 1.5× 10−35 m, which is many

orders of magnitude smaller then any other known physical length.
String theories may allow for temporal and spatial variation of the coupling constants that could be associated with

cosmic dynamics. Some possible mechanisms that lead drift or spatial variations of the fundamental constants are
discussed in literature [14–17]. As of now it seems that there is no sufficient theoretical evidence to make any well-
grounded prediction of the size of such variations. For this reason experimental search is the appropriate way to look for
new physics beyond the standard model. Among the variety of different methods, laboratory frequency measurements
have become competitive very recently in terms of sensitivity to a possible variation of the fine structure constant in
the present epoch. Though the time interval covered by these measurements is restricted to a few years, very high
accuracy compensates for this disadvantage such that their sensitivity becomes comparable with astrophysical and
geological methods operating on a billion-year time scale.

In this Chapter we give a description of the hydrogen beam experiment and methods of laser stabilization. Then,
we will present the main principles of optical frequency measurements by the frequency comb technique using as an
example the hydrogen 1S – 2S line. The derivation of the Rydberg constant, the Lamb shift, measurements of the 2S
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hyperfine structure, and a brief discussion of corresponding QED tests will be given in the next section. In the last
part we will show how the results of optical frequency measurements can be used to derive upper limits of the drift
of fundamental constants. A comparison with results from sensitive non-laboratory measurements are presented.

II. TWO-PHOTON SPECTROSCOPY OF THE 1S – 2S TRANSITION IN ATOMIC HYDROGEN

In the absence of external fields, the 2S level in atomic hydrogen decays to the ground 1S state via two-photon
emission with the time constant of about 1/7 second. Taking into account that the 1S and the 2S levels are separated
by 2.466 × 1015 Hz, the Q-factor of the 1S – 2S transition is about 2 × 1015. For many decades this value attracted
close attention of spectroscopists, and a number of new methods to decrease the observed spectral line width have
been invented. This dipole forbidden transition can be probed by means of Doppler-free two-photon spectroscopy with
counter-propagating laser beams of equal frequencies. The required wavelength of λ = 243 nm can be generated either
by a frequency doubled dye laser at 486 nm, or by quadrupling the frequency of titanium:sapphire or semiconductor
laser at 972 nm. First experiments on two-photon spectroscopy of the 1S – 2S transition started back in 1975, where
a sample in a glass cells has been excited by a frequency doubled pulsed dye laser [18]. Since then, the experimental
setup has been significantly improved: the cell has been replaced by an atomic beam apparatus. Remarkable progress
has been made with the laser setup and the detection system. The improvements allowed to achieve a spectral
resolution of 5 × 1012 which is still far away from the Q-factor defined by the natural line width. The current
limit is due to contributions of velocity-dependent effects like time-of-flight broadening and the 2nd order Doppler
effect [19]. Reducing the temperature of the hydrogen beam could solve these problems. The group of D. Kleppner at
MIT [20] has shown experimentally that atomic hydrogen can be stored in magnetic trap and even Bose condensed,
which significantly increases interrogation time and virtually eliminates contribution of the Doppler effect. However,
collisional shifts of the 1S – 2S line prevent precise spectroscopy in this case. On the other hand, trapping and
cooling of atomic hydrogen in magneto-optical traps still appears to be difficult because of the specific level structure
(excitation from the 1S state is always accompanied with ionization [21]) and technical difficulties to produce intense
resonant light at 121 nm [22]. One possible route has been pointed out recently by D. Kielpinsky who proposes to use
two photon laser cooling with the 1S – 2S resonance by pulsed 243 nm light from a mode locked laser [23].

The resolution and accuracy of hydrogen 1S – 2S measurements strongly depend on excitation and detection meth-
ods as well as on the stability of the interrogating laser. In the next Section we will describe the hydrogen spectrometer
in Garching, starting with the description of the laser system used to excite the two-photon transition.

A. Laser system

For excitation of the 1S – 2S transition in atomic hydrogen we use highly stable laser systems that deliver light at
λ = 243 nm. In this section we present a dye laser operating on Coumarin 102 at 486 nm and a diode laser system
at 972 nm designed for that purpose. While the former has been routinely used for high-precision measurements
(see [9] for instance), the latter is planned to be transportable to use it for a variety of measurements in hydrogen-like
exotic systems [24]. Comparing the requirements of our laser source to other stable laser sources used in metrological
laboratories all over the world, there are two issues that require special attention. First, for efficient excitation
of the 1S – 2S transition one needs considerable power. This is because the two-photon transition is weak and
Rabi frequencies on the order of 1 kHz are required because of the brief interrogation time available in an atomic
beam. Secondly, the laser output is multiply transformed in non-linear processes (one doubling stage and two-photon
transition for the dye laser and one additional doubling stage for the diode laser system). This fact imposes stringent
requirements on the phase noise of the laser and on its spectral line shape [25].

For frequency stabilization of the dye laser we use a high-finesse cavity oriented with its axis horizontal that is located
inside a temperature-stabilized vacuum chamber as shown in Fig. 1. The cavity is made from Ultra Low Expansion
(ULE) glass and has a finesse of 90 000. We use a two-stage temperature stabilization system for suppressing thermal
fluctuations of the cavity. The outer shell consists of an aluminum box with a layer of heat foils glued to all its sides.
A 6-channel temperature controller maintains the temperature for each side within 100µK (at the position of the
corresponding sensor) by a fast two-point digital relay circuit. The internal stage is a conventional slow integrating
circuit which heats the vacuum chamber to 31 ◦C. The residual temperature fluctuation on the surface of the vacuum
chamber does not exceed 1 mK with a typical time constant of a few hours.

The frequency stabilization of the dye laser is made by means of the Pound-Drever-Hall phase modulation tech-
nique [26]. The optical locking scheme is very similar to the one presented in Fig. 2 (right). High servo loop bandwidth
of about 3 MHz is reached using an intra-cavity electro-optical modulator (EOM). Measurements performed in 2003
have shown, that the typical short-term frequency drift does not exceed 0.5 Hz/s at 486 nm, while the spectral line
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FIG. 1: (left) — Reference cavity for stabilization of the dye laser at 486 nm. The cavity spacer is oriented horizontally and is
supported from the bottom. (right) — The cavity assembly (not to scale) is placed in the vacuum chamber with two stages of
temperature stabilization. The total volume of the device is about 3m3.

width of the dye laser has been measured to be 60 Hz for averaging times of 0.2 s [27]. The long-term drift of the
cavity, measured over 5 years relative to the 1S – 2S transition frequency in atomic hydrogen, is about +0.05 Hz/s
which most likely derives from aging of the ULE spacer. The stabilized dye laser at 486 nm turned out to be a powerful
and reliable light source. Its radiation is frequency doubled in a barium β-borate crystal (BBO). All experiments on
hydrogen which will be presented in this chapter have been made using this dye laser.

The diode laser source is a frequency-quadrupled master-oscillator power-amplifier system [24]. A laser diode
operating at 972 nm is placed in an external Littrow cavity. The output is amplified using a tapered amplifier (TA),
producing 650 mW at 972 nm. A small fraction of this light is used for stabilization to an external reference cavity.
In this case we used an elaborated concept of a vertical mid-plane reference cavity [28] which provides over 40 dB
less sensitivity to vertical vibrations [29]. Its 7.5 cm spacer is made from selected ULE material and is commercially
available [30]. The principle of vibration suppression is illustrated in Fig. 2, where the calculated deformation of such
a cavity under acceleration of 1 g is presented. By design the top and bottom parts of the cavity, where the cavity
mirrors are located, deform in a synchronized way such that the distance between the mirrors, which defines the
optical resonance, is maintained under vertical acceleration induced by seismic or acoustic vibrations.

We have measured a finesse F = 420 000 at 972 nm of the two vertical cavities which are at our disposal using the
standard ringdown method. The first cavity is placed in an aluminum vacuum chamber which is pumped by a small
2 l/s ion-getter pump to 10−7 mbar. The chamber and the pump are temperature stabilized by a conventional inte-
grating servo circuit. Another stage of temperature and acoustic isolation consists of a hermetically sealed aluminum

FIG. 2: (left) — Calculated deformation of a mid-plane supported 2-D glass block with a cross section of our vertical cavity
under acceleration of 1 g. (right) — Stabilization of the external cavity diode laser (ECDL) at 972 nm to the vertical reference
cavity. To characterize the spectral properties of the laser system we either use the Pound-Drever-Hall error signal from the
second reference cavity or the radiation from the stabilized dye laser at 486 nm.
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FIG. 3: Reference cavity “matryoshka-design”. The cavity temperature can be stabilized from 7 ◦C to 20 ◦C by Peltier elements.
The shells are made from aluminum. A free running sensor (at the top) detects temperature fluctuations in the range of 2mK
correlated with fluctuations of the laboratory air conditioning system.

box, each side of which is controlled by a two-point relay temperature stabilization system providing uniform radiation
temperature from all sides to the vacuum chamber. The optical ports are equipped with narrow-band interference
filters. Temperature fluctuations on the walls of the vacuum chamber do not deviate by more than 1 mK from the
set temperature of 31 ◦C on a time sale of a few hours. In comparison to the 486 nm cavity setup, the volume is
significantly reduced to less then 0.04 m3.

Relative length changes of ULE show a temperature dependence of δ`/` ∼ 10−9(T − Tc)2 K−2 [29], where Tc is
the zero-expansion temperature at which the spacer reaches its minimum length. So far Tc could not be specified
reliably by the manufacturer and turns out slightly below room temperature. To measure Tc and to characterize
the spectral properties, a second cavity with a vertical oriented axis has been constructed. To be able to reach
the zero expansion temperature this cavity must be cooled below room temperature. This is achieved by placing
it inside two nested cylindrical aluminum shells (“matryoshka-design”), both of which housed in a vacuum vessel.
The inner shell is thermally coupled to the outer one by a Peltier element, while the latter is coupled to the internal
surface of the stainless steel vacuum chamber by another double-stage Peltier element. Each of the shells has its
individual temperature control unit. The vacuum system is pumped out by a 25 l/s ion-getter pump to 10−7 mbar.
This configuration allowed us to cool the second cavity to 7 ◦C with temperature fluctuations of the inner shell of
about 2 mK. Due to the reduced thermal insulation, temperature coupling to the environment and the corresponding
time constant are worse for this system in comparison with the room temperature cavity. Results of Tc measurement
are presented below.

Both 972 nm cavities are placed on separate active vibration-isolating platforms and equipped with Pound-Drever-
Hall feedback systems each of which consisting of a temperature-stabilized electro-optical modulator (EOM), a fast
photo-diode and necessary optics (see Fig. 2 (right)). The light from the laser is coupled to each cavity by a single-
mode optical fiber (cleaved at 8 ◦ at the exit side), with the standard fiber-noise cancellation method applied [31]. The
diode laser is locked to one of the vertical cavities, while the error signal from the second cavity is used to investigate
the spectral properties of the stabilized diode laser. We also measured a beat note between the stabilized dye laser at
486 nm and the frequency-doubled light from the diode laser system which allowed us to separately investigate fast
phase noise fluctuations of the diode laser.

As shown on the right hand side of Fig. 2, the dye laser as well as the radiation of the doubled diode laser are
frequency doubled once again in separate second harmonics generation stages (SHGs 2 and 3). After astigmatism
compensation both systems yield about 20 mW narrow-band radiation at 243 nm in near-Gaussian beams. In ad-
dition to the beat note at 486 nm we also generate a beat signal at 243 nm for closer investigation of the spectral
characteristics.

The beat note power spectrum between the dye laser and the second harmonic of the diode laser is presented in
Fig. 4 (left) for large frequency detunings. One observes a narrow central peak on a broad pedestal of a few MHz
spectral width. We ascribe the origin of this pedestal to uncompensated high-frequency phase noise of the diode
laser and to phase noise of its electronic feedback loop [32]. Indeed, the main contribution of the phase noise of
the free-running dye laser is due to low-frequency acoustic vibrations and can be suppressed very efficiently. The
assumption, that the main contribution to the pedestal is due to the diode laser radiation can be readily tested by
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changing the parameters of the corresponding feedback loops: It turns out that the pedestal shape is very sensitive
to the adjustment of the diode laser feedback. Obviously for such a line shape (narrow peak sitting on a broad
pedestal) the line width is not a very useful concept. To characterize the spectrum we rather measure the relative
power contained in the narrow central peak.

This fractional power reaches S486 = 0.95 for proper adjustment of the diode laser electronic feedback. Following
Ref. [25], the power fraction in the central peak can be written as:

S = e−〈φ
2〉 , (1)

which is valid not only for the case of small modulation depth, but also for deep modulation 〈φ2〉 ∼ 1. Here φ is
the rms phase noise of the laser radiation which is assumed to correspond to a Gaussian distributed ergodic noise
process. From the last equation one finds, that doubling the rms phase noise that takes place when doubling the laser
frequency, reduces the fractional power of the central peak to:

S′ = S4 . (2)

This reduction not only applies to the second harmonic generation steps but effectively also for driving a two-photon
transition. The carrier reduction process is illustrated in Fig. 4 (right), where the power spectrum of the beat signal
at 243 nm between the second harmonic of the dye laser and the fourth harmonic of the diode laser is presented. The
power fraction of the carrier is reduced in agreement with (2) to 0.954 = 0.81. From this we conclude that the rms
phase noise of the diode laser at 972 nm to be φ = 6.5 ◦ and that we can expect a carrier strength of the 1S – 2S
transition to be 44%. This underlines the importance of putting as much power as possible into the carrier of the
diode laser with a proper cavity locking system.

More information from the beat note spectra can be obtained by analyzing the line shape of the carrier in addition
to its fractional power. It can be shown, that the spectral line width of an oscillator is doubled or quadrupled in a
frequency doubling process (SHG or two-photon transition) depending on the noise properties of the oscillator [34, 35].
The two cases are fast short-correlated phase variation with small amplitude and long-correlated phase variation with
large amplitude. Let us consider an oscillator output A0 cos(ω0t + ϕ(t)), where ω0 is the carrier frequency and ϕ(t) is
the fluctuating phase. Frequency fluctuations Ω(t) = ϕ̇(t) are assumed to correspond to a stationary stochastic process
having an rms amplitude of Ωrms and correlation time of τΩ. The two types of modulations can be distinguished from
their line shape and frequency doubling properties. Short-correlated phase noise (ΩrmsτΩ ¿ 1) produces a Lorentzian
shape whose width is quadrupled when doubling the carrier frequency. On the other hand deep slow phase variations
(ΩrmsτΩ À 1) produce Gaussian line shapes, that only double in width after frequency doubling.

By zooming into the central part of the beat note spectrum we compared the spectral line widths at 486 nm and
243 nm (Fig. 4) and observed, that the spectral width doubles after the second SHG stage. This indicates that the
residual line width of the stabilized dye laser results from slow but large phase excursions. A good fraction of that
noise origins from the horizontal cavity suspension to which the dye laser is locked (Fig. 1) which has an eigenfrequency
of about 1 Hz. We measured the spectral width of the central peak to be 60Hz for averaging times of 0.4 s. Frequency
fluctuations of the stabilized diode laser are negligible on this time scale because its vertical reference cavity does not
sway. This evaluation of the spectral line width of the dye laser is independently confirmed by measurements of the
spectral width of the 1S – 2S transition [33].

FIG. 4: (left) — Power spectral density of the beat signal at 486 nm between the second harmonic of the stabilized diode laser
and stabilized dye laser. (right) — Simultaneously recorded spectrum of the beat signal at 243 nm. The fraction of power of the
central peak relative to the total power is given as a percentage in the plots.
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FIG. 5: (left) — Power spectrum of the beat signal between two independent 972 nm vertical cavities supported at mid plane.
The data is obtained from drift corrected average of 14 consecutive spectra recorded with a the scan time of 8 s and a resolution
of the FFT spectrum analyzer of 0.125 Hz. The dashed line is a Lorentzian fit to the data. (right) — Normalized Allan deviation
for these cavities. Linear drift has been subtracted.

To investigate the stability of our vertical 972 nm cavities we used one of the cavities as frequency discriminator
while locking the diode laser system to the other cavity. Due to small drift rate of the cavities one can either directly
analyze the error signal generated by the discriminator cavity or by using this signal to lock an AOM shifted copy
of the diode laser output [36]. In the latter case the spectrum of the beat note between the two decoupled light
fields is analyzed. Only noise components inside the AOM locking servo bandwidth (a few tens of kilohertz) are
properly reproduced in this way. A typical power spectrum of such a beat note is presented in Fig. 5 (left). It has
been recorded by an FFT spectrum analyzer with a resolution of 0.125 Hz and a scan time of 8 s. The plot is an
average of 14 sequential scans where the drift induced shift of the beat note is corrected for. The spectral line shows
a Lorentzian shape with a 0.45Hz full width at a half maximum.

The typical relative drift of two vertical 972 nm cavities corresponds to about 1 Hz/s and results mostly from
temperature fluctuations of the cavities and the EOM crystals which causes the lock point of the Pound-Drever-Hall
stabilization to drift. A plot of the Allan deviation of the frequency difference of the two vertical cavities is presented
in Fig. 5 (right).

To determine the ULE zero expansion point Tc we have measured the frequency of the beat note between the two
vertical cavities while varying the temperature of the Peltier-controlled matryoshka-design. The second vertical cavity
served as a frequency reference with a negligible long-term drift. After changing the set temperature we waited for
about one day to reach the new equilibrium before the beat note frequency was measured. The result is shown in
Fig. 6 (left).

One observes a parabolic dependence which corresponds to the expected ULE thermal expansion. At Tc ≈ 12.5 ◦C

FIG. 6: (left) — Measurement of the cavity zero expansion temperature Tc. Note, that linear thermal expansion of the multilayer
coating significantly contributes to the cavity length changes which results in a shift of measured value for Tc with respect to
the zero expansion point of pure ULE glass material. (right) — Cavity response to modulated heating. During the period I
the background drift rate is observed. For period II a modulated heating laser is periodically switched on which homogenously
illuminated the cavity through the viewport of the vacuum chamber. In period III the heating is turned off and the cavity returns
to the slow thermal response of the mirror substrates and the spacer, both made from ULE.
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the distance between mirrors reaches its minimum and so does the beat note frequency. By choosing the working
point at Tc, one could expect a minimal sensitivity to temperature fluctuations. Exactly at Tc the spacer length
fluctuations become negligible in comparison with thermal response of the multilayers coating which in our case has
a thickness of 5 µm on each mirror. The result of the coating thermal expansion is observed in Fig. 6 (right). In this
simple experiment we heat the cavity through the vacuum viewport using the radiation of a 830 nm fiber-coupled
laser diode emitting about 30 mW in a wide solid angle. The light of the diode has been periodically switched on and
off for 10 s intervals.

We ascribe a fast response of the cavity resonance frequency to laser heating to thermal expansion of the multilayer
mirror coatings [37]. After switching off the light one can observe the coating and the substrate thermalizing with the
spacer in few hundred seconds, and the spacer starts slowly to react by changing its length (the experiment has been
performed at T > Tc). By quickly changing the temperature of the aluminum shell surrounding the cavity, through
one of the Peltier elements, we have estimated the sensitivity of its resonance frequency to blackbody radiation to
about 3Hz/mK. Thus, even if working at Tc one has to suppress fast temperature fluctuations and carefully shield
the cavity from external radiation sources which can cause short-term cavity length fluctuations and loss of stability.
On the other hand, working near Tc allows to suppress long-term cavity drift.

For routine measurements of the 1S – 2S transition in atomic hydrogen we still use the dye laser system. Though
it possesses significantly broader spectral carrier line width (60 Hz at 486 nm in comparison with sub-hertz line width
of the diode laser system), the fraction S of the power falling in the narrow carrier approaches 1 which allows for
more efficient excitation of atomic hydrogen. It should be noted that the observed 1S – 2S transition line width is
still significantly larger than 60 Hz (measured at 486 nm). Therefore the dye laser allows to model the hydrogen line
shape based on fundamental physics rather than modelling the line shape of the exciting laser. This is important for
the ability to split the observed line width in order to derive a precise value for the unperturbed transition frequency.
However, the laser diode system may become useful for the 1S – 2S transition after increasing the finesse of the
enhancement cavity at 243 nm (see below) and/or further improving the diode laser locking scheme.

B. Hydrogen spectrometer

To efficiently excite the 1S – 2S two-photon transition in atomic hydrogen it is necessary to illuminate the atoms
by intense laser radiation at 243 nm. A resonance line independent of the Doppler shift to first order is obtained by
using two counter propagating laser beams for that purpose. The conditions for this excitation scheme are fulfilled
by employing an enhancement cavity as shown in Fig. 7. The cavity consists of a flat input coupling mirror and a
concave output coupling mirror (radius R = −4m) separated by a distance of about 30 cm.

Atomic hydrogen is produced in a microwave gas discharge and emerges from a copper nozzle cooled by a flow-
through helium cryostat to T ' 5 K. Thermalized atoms escape the nozzle of 1 – 2 mm in diameter and enter the
interaction zone co-linear with the laser beam. The atomic beam is restricted by two diaphragms (not shown in
Fig. 7). We operate at a typical gas flow of 4 × 1017 particles per second with an estimated 10% dissociated atomic
fraction. During the flight through the Gaussian profile of the cavity TEM00 mode, some of the atoms are promoted
to the metastable 2S state. When entering the Lyman-α detector these atoms are quenched in a weak dc electric
field. This field mixes the 2S state with the short-lived 2P state causing the prompt emission of a Lyman-α photon
which is detected by a photomultiplier tube. After the 1999 measurement, which had been performed at a background
gas pressure of around 10−6 mbar, we have upgraded the vacuum system by supplying it with a differential pumping
configuration that separates a high vacuum (HV) from an ultra high vacuum section (UHV). This allowed us to vary
the background gas pressure between 10−8 and 10−7 mbar in the 2003 measurement to deduce the background gas
pressure shift and to reduce the corresponding uncertainty down to 2 Hz.

To limit the velocity of atoms contributing to the signal in order to reduce velocity-dependent systematic effects, a
time-of-flight detection scheme is used. For this purpose the excitation laser is chopped by a wheel chopper operating at
160Hz with a 50% duty cycle. A sharp trigger signal is generated each time when the 3 ms dark phase starts. Then, a
precisely defined time delay ∆τ is introduced between the trigger and the start of the detection of the Lyman-α signal.
After that, the photon accumulation continues until the end of the dark chopper phase. By using this technique, all
atoms with velocities larger than vmax(∆τ) = `int/∆τ escape the detection zone of length `int ≈ 14 cm (the distance
separating the nozzle and the photomultiplier) before the start of the detection cycle and do not contribute. Another
advantage of this technique is a significant suppression of the background count rate originating from scattered 243 nm
light that would otherwise be registered by the photomultiplier.

To record a hydrogen resonance line the laser frequency is scanned stepwise across the resonance while a multichannel
scaler records the number of detected Lyman-α photons for 12 different delays ∆τi = 10, 210, 410, . . . , 2210 µs in
the corresponding time windows {∆τ , 3 ms}. The accumulation time for each laser frequency setting is one second
and typically about 50 different detunings are collected to record a hydrogen time-resolved spectrum.



8

UHV

HV

cryostat

atomic 

hydrogen

Faraday 

cage

Lyman-α 

detector

e
n
h
a
n
c
e
m

e
n
t
 
c
a
v
i
t
y

486 nm

servo
AOM

reference cavity

243 nm

1

CE

I(1)

x 2

beat @ 1
b

chopper

x 2

1

r

frequency comb

atomic 

clock
power measurment

1

L

dye laser

1

FIG. 7: The hydrogen spectrometer. The frequency ωL of the light from the dye laser is measured with a frequency comb locked
to a primary frequency standard while the same light is used to excite the 1S – 2S transition in a beam of atomic hydrogen. See
text for further details. Details on the frequency comb are given in Section III.

The radiation transmitted trough the enhancement cavity is monitored by a calibrated silicon photodiode. The
photodiode readout is averaged over the laser frequency dwelling time to normalize the spectrum and determine the
ac Stark shift. Dividing the photodiode readout by the transmission of the output coupling mirror we get the total
power circulating in the enhancement cavity per direction.

Using this detection technique we simultaneously record 12 lines, each containing the contributions of atoms in the
respective velocity range 0 < v < vmax(∆τi) (i = 1, . . . , 12), selected from the same initial velocity distribution f(v).
Following Ref. [38] the velocity distribution of a one-dimensional thermal atomic beam effusing from thermalized gas
volume through a hole in a thin wall is given by:

f(v) ∝ (v/v0)3 exp[−(v/v0)2] , (3)

where v0 =
√

2kBT/mH is the most probable thermal velocity for a given temperature T and mH is the mass of the
hydrogen atom. As discussed in [38] and references therein, expression (3) is valid for perfectly collimated beams and
should be further modified in other cases. The collimation angle of the atomic beam in our experiment is about 0.01
which justifies the use of f(v) for modelling.

A large delay ∆τ reduces the maximum velocity vmax(∆τ) of atoms contributing to the signal, which is desired,
but also decreases the Lyman-α count rate. The slow atoms contribution show a small time-of-flight broadening and
a small second-order Doppler effect so that a narrow and symmetric transition line shape is obtained. Hence, the fast
atoms provide good statistics whereas the slow atoms show superior systematics. For a highly accurate measurement
we need to combine good statics with low systematics. For this reason we have developed a detailed line-shape
model [19] that can use all delays by taking into account all dynamic effects associated with the movement of the
hydrogen atoms through the laser beam.

A typical time-resolved spectrum of the 1S – 2S transition is shown in Fig. 8. The most important systematic effects
that shift the transition frequency are the 2nd order Doppler effect and the ac Stark shift. The latter reads ∆νAC =
2βACI(~r), where I(~r) is the intensity of the laser beam at position ~r per direction with βAC = 1.67 Hz (W/cm2)−1 [21].
The value for ac Stark shift averaged over the atomic trajectories is in the range of 0.1 – 1 kHz for our experimental
excitation intensities. To determine the unperturbed transition frequency we measure at different intensities and
extrapolate to zero intensity. There are other small systematic effects like the dc Stark shift, the pressure shift, the
blackbody shift to name a few, that contribute on the level of a few hertz.

Three different effects are the main contribution to the observed 1S – 2S line width (see Fig. 8 (right)): Time of
flight broadening, power broadening and ionization broadening that add in highly non-trivial way [33]. For lower
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FIG. 8: (left) — Experimental time-resolved spectrum of the 1S – 2S transition together with a fit obtained from a line shape
model (solid lines) [19]. (right) — Typical transition line detected at low excitation power circulating in the enhancement cavity
(the on-axis intensity I(0) per direction of 200W/cm2) and a time delay τ = 1210 µs.

excitation powers and delay times of about 1 ms the resolution of the hydrogen spectrometer reaches 2 × 1013. To
measure the frequency of the 1S – 2S transition a small part of 486 nm light is sent to an octave-spanning frequency
comb referenced to a primary frequency standard (see Fig. 7). The principles of operation of the frequency comb along
with results of the 1S – 2S transition frequency measurements will be given in the following Section.

III. OPTICAL FREQUENCY MEASUREMENTS

Frequency can be measured with by far the highest precision of all physical quantities. In the radio frequency
(rf) domain (say up to 100 GHz), frequency counters have existed for a long time. Almost any of the most precise
measurements in physics have been performed with such a counter that uses an atomic clock as a time base. To extend
this accurate technique to higher frequencies, so called harmonic frequency chains have been constructed since the
late 1960ies [39, 40]. In such a chain nonlinear elements produce frequency multiples (harmonics) of a given oscillator
to which a subsequent oscillator is phase locked to. The latter is necessary because nonlinear devices usually produce
only weak signals, at least when they are driven with a continuous wave. Electronic phase locked loops can be used
to stabilize any kind of oscillator, even lasers, provided their intrinsic stability is sufficient so that there is no need
for very rapid frequency corrections. Repeating the multiply and phase lock procedure many times makes it possible
to convert a reference radio frequency, say from an atomic clock, to much higher frequencies. Because of the large
number of steps necessary to build a long harmonic frequency chain, it was not before 1995 when visible laser light
was first referenced phase coherently to a cesium atomic clock using this method [41].

The disadvantage of these harmonic frequency chains was not only that they could easily fill several large laser
laboratories at once, but that they could be used to measure a single optical frequency only. Even though mode
locked lasers for optical frequency measurements have been used in rudimentary form in the late 1970ies [42], this
method became only practical with the advent of femtosecond (fs) mode locked lasers. Such a laser necessarily emits
a very broad spectrum, comparable in width to the optical carrier frequency. Currently the working horse in that field
is the titanium-sapphire Kerr-lens mode locked laser, but fiber based lasers are expected to take over for frequency
metrology applications. Omitting exciting, but involved history of the development of octave-spanning frequency
combs, we will restrict ourselves to the description of its principles of operation using as an example the most recent
absolute frequency measurements of the 1S – 2S transition in atomic hydrogen.

A. Ultra-short pulse lasers and frequency combs

In the frequency domain a train of short pulses from a femtosecond mode locked laser is the result of a phase
coherent superposition of many continuous wave (cw) longitudinal cavity modes. These modes at ωn form a series of
frequency spikes that is called a frequency comb. The individual modes can be selected by phase locking other cw
lasers to them. As has been shown, the modes are remarkably uniform, i.e. the separation between adjacent modes is
constant across the frequency comb [10, 12, 43, 44]. This strictly regular arrangement is the most important feature
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used for optical frequency measurement and may be expressed as:

ωn = nωr + ωCE . (4)

Here the mode number n of some 105 may be enumerated such that the frequency offset ωCE lies in between 0 and
ωr = 2π/T . The mode spacing is thereby identified with pulse repetition rate, i.e. the inverse pulse repetition time
T . With the help of that equation two radio frequencies ωr and ωCE are linked to the optical frequencies ωn of the
laser. For this reason mode locked lasers are capable to replace the harmonic frequency chains of the past.

To derive the frequency comb properties [45] as detailed by (4), it is useful to consider the electric field E(t) of
the emitted pulse train. We assume that the electric field E(t), measured for example at the lasers output coupling
mirror, can be written as the product of a periodic envelope function A(t) and a carrier wave C(t):

E(t) = A(t)C(t) + c.c. . (5)

The envelope function defines the pulse repetition time T = 2π/ωr by demanding A(t) = A(t − T ). The only thing
about dispersion that should be added for this description, is that there might be a difference between the group
velocity and the phase velocity inside the laser cavity. This will shift the carrier with respect to the envelope by a
certain amount after each round trip. The electric field is therefore in general not periodic with T . To obtain the
spectrum of E(t) the Fourier integral has to be calculated:

Ẽ(ω) =
∫ +∞

−∞
E(t)eiωtdt . (6)

Separate Fourier transforms of A(t) and C(t) are given by:

Ã(ω) =
+∞∑

n=−∞
δ (ω − nωr) Ãn and C̃(ω) =

∫ +∞

−∞
C(t)eiωtdt . (7)

A periodic frequency chirp imposed on the pulses is accounted for by allowing a complex envelope function A(t). Thus
the “carrier” C(t) is defined to be whatever part of the electric field that is non-periodic with T . The convolution
theorem allows us to calculate the Fourier transform of E(t) from Ã(ω) and C̃(ω):

Ẽ(ω) =
1
2π

∫ +∞

−∞
Ã(ω′)C̃(ω − ω′)dω′ + c.c. =

1
2π

+∞∑
n=−∞

ÃnC̃ (ω − nωr) + c.c. . (8)

The sum represents a periodic spectrum in frequency space. If the spectral width of the carrier wave ∆ωc is much
smaller than the mode separation ωr, it represents a regularly spaced comb of laser modes just like (4), with identical
spectral line shapes, namely the line shape of C̃(ω) (see Fig. 9). If C̃(ω) is centered at say ωc, than the comb is shifted
from containing only exact harmonics of ωr by ωc. The center frequencies of the mode members are calculated from
the mode number n [11, 42, 45]:

ωn = nωr + ωc . (9)
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FIG. 9: The spectral shape of the carrier function (left), assumed to be narrower than the pulse repetition frequency (∆ωc ¿ ωr),
and the resulting spectrum according to (8) after modulation by the envelope function (right).
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The measurement of the frequency offset ωc as described below (see also [10, 11, 43, 45, 47]) usually yields a value
modulo ωr, so that renumbering the modes will restrict the offset frequency to smaller values than the repetition
frequency and (4) and (9) are identical.

If the carrier wave is monochromatic C(t) = e−iωct−iϕ, its spectrum will be δ-shaped and centered at the carrier
frequency ωc. The individual modes are also δ-functions C̃(ω) = δ(ω − ωc)e−iϕ. The frequency offset (9) is identified
with the carrier frequency. According to (5) each round trip will shift the carrier wave with respect to the envelope by
∆ϕ = arg(C(t−T ))−arg(C(t)) = ωcT so that the frequency offset may also be identified by ωCE = ∆ϕ/T [11, 42, 45].
In a typical laser cavity this pulse-to-pulse carrier-envelope phase shift is much larger than 2π, but measurements
usually yield a value modulo 2π. The restriction 0 ≤ ∆ϕ ≤ 2π is synonymous with the restriction 0 ≤ ωCE ≤ ωr

introduced above. Fig. 10 sketches this situation in the time domain for a chirp free pulse train.

E (t) 2∆7

t

Fourier 

transformation

1r

E (1)

1

1CE

1c

∆7

FIG. 10: Consecutive un-chirped pulses (A(t) is real) with carrier frequency ωc and the corresponding spectrum (not to scale).
Because the carrier propagates with a different velocity within the laser cavity than the envelope (with phase- and group velocity
respectively), the electric field does not repeat itself after one round trip. A pulse-to-pulse phase shift ∆ϕ results in an offset
frequency of ωCE = ∆ϕ/T . The mode spacing is given by the repetition rate ωr. The width of the spectral envelope is given by
the inverse pulse duration up to a factor order unity that depends on the pulse shape.

In a real laser the carrier wave will not be a clean sine wave as in this example. The mere periodicity of the field,
allowing a pulse to pulse carrier envelope phase shift, already guarantees the comb like spectrum. Very few effects
can disturb that property. In particular, for an operational frequency comb, both ωr and ωCE will be servo controlled
so that slow drifts are compensated. The property that the comb method really relies on, is the mode spacing being
constant across the spectrum. Even a small deviation from this condition will have very quick and devastating effects
on the pulse envelope. However, the phase of individual modes can fluctuate about an average value required for
staying in lock with the rest of the comb.

B. Extending the frequency comb

The spectral width of a pulse train emitted by a fs laser can be significantly broadened in a single mode fiber [46]
by self phase modulation. Assuming a single mode carrier wave, a pulse that has propagated the length L acquires a
self induced phase shift of

ΦNL(t) = −n2I(t)ωcL/c , (10)

where the pulse intensity is given by I(t) = 1
2cε0|A(t)|2. For fused silica the non-linear Kerr coefficient n2 is com-

paratively small but almost instantaneous even on the time scale of fs pulses. This means that different parts of the
pulse travel at different speed. The result is a frequency chirp across the pulse without affecting the its duration. The
pulse is no longer at the Fourier limit so that the spectrum is much broader than the inverse pulse duration where the
extra frequencies are determined by time derivative of the self induced phase shift Φ̇NL(t). Therefore pure self-phase
modulation would modify the envelope function in (5) according to

A(t) −→ A(t)eiΦNL(t). (11)
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Because ΦNL(t) has the same periodicity as A(t) the comb structure of the spectrum is maintained and the derivations
(8) remain valid because periodicity of A(t) was the only assumption made. An optical fiber is most appropriate for
this process because it can maintain the necessary small focus area over a virtually unlimited length. In practice,
however, other pulse reshaping mechanism, both linear and non-linear, are present so that the above explanation is
too simple.
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FIG. 11: (left) — SEM image of a the core of a microstructure fiber made at the University of Bath, UK [48]. The light is
guided in the central part but the evanescent part of the wave penetrates into the air holes that run parallel to the fiber core
and lower the effective refractive index without any doping. The guiding mechanism is the same as in a conventional single
mode fiber. (right) — Power per mode on a logarithmic scale (0 dBm=1mW). The lighter 30 nm (14 THz at −3 dB) wide
spectrum displays the laser intensity and the darker octave spanning spectrum (532 nm through 1064 nm) is observed after the
microstructure fiber that was 30 cm long. The laser was operated at ωr = 2π × 750 MHz (modes not resolved) with 25 fs pulse
duration. An average power of 180 mW was coupled through the microstructure fiber [52].

Higher order dispersion is usually limiting the effectiveness of self phase modulation as it increases the pulse duration
and therefore lowers the peak intensity after a propagation length of a few mm or cm for fs pulses. On can get a better
picture if pulse broadening due to group velocity dispersion k′′(ωc) is included. To measure the relative importance
of the two processes, the dispersion length LD (the length that broadens the pulse by a factor

√
2) and the non-linear

length LNL (the length that corresponds to the peak phase shift ΦNL(t = 0) = 1) are used [46]:

LD =
4 ln(2)τ2

0

|k′′(ωc)| , LNL =
cAf

n2ωcP0
, (12)

where τ0, Af and P0 = 1
2Afcε0|A(t = 0)|2 are the initial pulse duration, the effective fiber core area and the pulse

peak power respectively. In the dispersion dominant regime LD ¿ LNL the pulses will disperse before any significant
nonlinear interaction can take place. On the other hand, for LD > LNL spectral broadening could be thought as
effectively taking place for a length LD even though the details are more involved. The total non-linear phase shift
can therefore be approximated by the number of non-linear lengths within one dispersion length. As this phase shift
occurs roughly within one pulse duration τ0, the spectral broadening is estimated to be ∆ωNL = (LNL/LD)τ−1

0 .
As an example consider a silica single mode fiber (Newport F-SF) with Af = 26 µm2, k′′(ωc) = 281 fs/cm2 and
n2 = 3.2× 10−16 cm2/W that is seeded with τ0 = 73 fs Gaussian pulses (FWHM intensity) at 905 nm with 225 mW
average power and a repetition rate of 76 MHz [45, 51]. In this case the dispersion length becomes 6.1 cm and the
non-linear length 35 mm. The expected spectral broadening of (LNL/LD)τ−1

0 = 2π × 44 THz is indeed very close to
the observed value [45].

It turns out that within this model the spectral broadening is independent of the pulse duration τ0 because P0 ∝ τ0.
Therefore using shorter pulses may not be effective for extending the spectral bandwidth beyond an optical octave
as required for simple self-referencing (see the next Section). However, very efficient spectral broadening can be
obtained in microstructure fiber[120] that can be manufactured with k′′(ωc) ≈ 0 around a design wavelength [48–50].
In this case the pulses are broadened by other processes (linear and non-linear) than group velocity dispersion as they
propagate along the fiber. Eventually this will also terminate self phase modulation and the dispersive length has to
be replaced appropriately in the above analysis. At this point a whole set of effects enter such as Raman and Brillouin
scattering, optical wave breaking and modulation instability [46]. Some of these processes even spoil the usefulness
of the broadened frequency combs as they amplify noise.

A microstructure fiber uses an array of submicron-sized air holes that surround the fiber core and run the length
of a silica fiber to obtain a desired effective dispersion. This can be used to maintain the high peak power over
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an extended propagation length and to significantly increase the spectral broadening. With these fibers it became
possible to broaden low peak power, high repetition rate lasers to beyond one optical octave as Fig. 11 shows.

Even though microstructure fibers have been very useful to spectrally broaden frequency comb, coupling to its tiny
core can cause problems due to mechanical instabilities and temperature drifts even with low level and stable mounts.
Another problem with spectral broadening by self phase modulation that it typically results in an excess noise level
of the beat notes well above the shot noise limit [57, 58]. Meanwhile lasers that reach an octave spanning spectrum
without using any external self-phase modulation can solve this problem [53–56]. So far however, these lasers seem
to be rather delicate to handle. An interesting alternative are lasers that avoid the use of microstructure fibers in
another way.

Yet another class of frequency combs that can stay in lock for even longer times are fs fiber lasers [59]. The most
common type is the erbium doped fiber laser that emits within the telecom band around 1500 nm. For this reason
advanced and cheap optical components are available to build such a laser. The mode locking mechanism is similar
to the Kerr lens method, except that non-linear polarization rotation is used to favor the pulsed high peak intensity
operation. Up to a short free space section that can be build very stable, these lasers have no adjustable parts. Bulk
fused silica has its zero group velocity dispersion at around 1.2 µm but this can be shifted to 1.5 µm in an optical
fiber. If in addition the radial dependence of the refractive index is designed to obtain a small core area Af , the fiber
becomes what is called a highly non-linear fiber (HNLF) without any microstructure. These HNLF’s are commercially
available and can be spliced directly to a fs fiber laser. This virtually eliminates the remaining alignment sensitive
parts as the free space frequency doubling stage and beat note detection can be build rather robust. Continuous
stabilized operation for many hours [60, 61] have been reported. The Max-Planck Institute für Quantenoptik in
Garching (Germany) operates a fiber based self referenced frequency comb that stays locked without interruption for
months.

C. Self-referencing

The measurement of ωCE fixes the position of the whole frequency comb and is called self-referencing. The method
relies on measuring the frequency gap between different harmonics derived from the same laser or frequency comb.
The first crude demonstration [43] employed the 4th and the 3.5th harmonic of a f = 88.4 THz (3.39 µm) laser to
determine ωCE according to 4ωn − 3.5ωn′ = (4n − 3.5n′)ωr + 0.5ωCE = 0.5ωCE with 4n − 3.5n′ = 0. To achieve
the condition of the latter equation both n and n′ have to be active modes of the frequency comb. The required
bandwidth is 0.5f = 44.2 THz, which is what the 73 fs laser together with a single mode fiber as discussed in the
previous chapter can generate.

A much simpler approach is to fix the absolute position of the frequency comb by measuring the gap between ωn

and ω2n of modes taken directly from the frequency comb [10, 11, 47, 51]. In this case the carrier-envelope offset
frequency ωCE is directly produced by beating the frequency doubled (it should be noted that this does not simply
mean the doubling of each individual mode, but the general sum frequencies generation of all modes. Otherwise the
mode spacing, and therefore the repetition rate, would be doubled as well) red wing of the comb 2ωn with the blue
side of the comb at ω2n: 2ωn − ωn′ = (2n− n′)ωr + ωCE = ωCE where again the mode numbers n and n′ are chosen
such that (2n − n′) = 0. This approach requires an octave spanning comb, i.e. a bandwidth of 375 THz if centered
at the titanium-sapphire gain maximum at 800 nm.

Figure 12 sketches the f − 2f self referencing method. The spectrum of a titanium-sapphire mode locked laser is
first broadened to more than one optical octave with a microstructure fiber. A broad band λ/2 wave plate allows to
choose the polarization with the most efficient spectral broadening. After the fiber a dichroic mirror separates the
infrared (“red”) part from the green (“blue”). The former is frequency doubled in a non-linear crystal and reunited
with the green part to create a wealth of beat notes, all at ωCE . These beat notes emerge as frequency difference
between 2ωn − ω2n according to (4) for various values of n. The number of contributing modes is given by the phase
matching bandwidth ∆νpm of the doubling crystal and can easily exceed 1 THz. To bring all these beat notes at ωCE

in phase, so that they all add constructively an adjustable delay in form of a pair of glass wedges or corner cube is
used. It is straight forward to show that the condition for a common phase of all these beat notes is that the green
and the doubled infrared pulse reach the photo detector at the same time. The adjustable delay allows to compensate
for different group delays, including the fiber. In practice the delay needs to be correct within c∆νpm which is 300 µm
for ∆νpm=1 THz. Outside this range a beat note at ωCE is usually not detectable.

A grating is used to prevent the extra optical power, that does not contribute to the signal but adds to the noise
level, from reaching the detector. Typically only a large relative bandwidth of say 1 THz/375 THz needs to be selected
so that a very moderate resolution illuminating 375 lines is sufficient. For this reason it is usually not necessary to
use a slit between the grating and the photo detector. Sufficient resolution can be reached with a small low cost 1200
lines per mm grating illuminated with a beam collimated with ×10 microscope objective out of the microstructured



14

5-30 cm 

microstructure fiber

dichroic 

beam 

splitter2(n1
r

+1

CE

)

n
=

2
n

detector 1
CE detector 1

r

frequency 

doubling

λ/2

grating

delay 

λ/2

λ/2

“blue”

titanium-sapphire 

mode locked laser

“red & blue”  “red”

n

λ/2

polarizing beam 

splitters

2n1
r

+1

CE

1

CE

I(1)

x 2

n1

r

+1

CE

1
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referencing scheme. See text for details.

fiber.
When detecting the beat note as described above, more than one frequency component is obtained for two reasons.

First of all any beat note, even between two cw lasers, generates a two components because the radio frequency
domain can not decide which of the two optical frequencies is larger than the other. Secondly, observing the beat
notes between frequency combs, not only the desired component k = 2n−n′ = 0 is registered, but all integer values of
k, positive and negative contribute, up to the bandwidth of the photo detector. This leads to a set of radio frequency
beat notes at kωr ± ωCE for k = . . . − 1, 0, +1 . . .. In addition the repetition rate, including its harmonics will most
likely give the strongest components. After carefully adjusting the nonlinear interferometer, spatially and spectrally,
and scanning the delay line for the proper pulse arrival times, the radio frequency spectrum may look like the one
shown in Fig. 13. A low pass filter with a cut-off frequency of 0.5ωr selects exactly one beat note at ±ωCE . The design
of such a filter may be tricky, mostly depending on how much stronger the repetition rate signal exceeds the beat note
at ωCE . The sketch in Fig. 13 gives a feeling on how steep this filter needs to be at the cut-off in order to suppress
the unwanted components below the noise level. Such a suppression is required for taking the full advantage of the
signal to noise ratio. For this reason it is desirable to work at higher repetition rates. At ωr around 2π × 800 MHz,
as used mostly with ring titanium-sapphire lasers, the filter requirements are much more relaxed than say at 80 MHz.
In addition, a larger repetition rate concentrates more power in each mode further improving the beat notes with the
frequency comb.

As described, both degrees of freedom ωr and ωCE of the frequency comb can be measured up to a sign in ωCE

that will be discussed below. For stabilization of these frequencies, say relative to a radio frequency reference, it is
necessary to be able to control them. Again the repetition rate turns out to be simpler. By mounting one of the lasers
cavity mirrors on a piezo electric transducer allows to control the pulse round trip time. Another option is offered by
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mode locked lasers that use prism pairs to compensate the intracavity group velocity dispersion. In this case tipping
the mirror at the dispersive end where the cavity modes are spatially separated, changes the relative cavity lengths
of the individual modes and thereby the mode spacing in frequency space [10]. In practice the detected repetition
frequency is mixed with the radio frequency reference, i.e. the frequency difference is generated, lowpass filtered and
with appropriate gain send back to the piezo electric transducer. When properly designed such a phase locked loop
forces one oscillator, the repetition rate, to stay in phase with another, the radio frequency reference.

Setting up a phase locked loop for the repetition rate therefore seems rather straightforward. However, some caution
concerning the servo bandwidth needs to be observed. It turns out that the large frequency multiplication factor n in
(4) may also multiplies the noise of the reference oscillator. The phase noise power for direct frequency multiplication
by n increases proportional to n2 [63], so that a factor of n = 106, that would take us from a 100 MHz radio frequency
signal to a 100 THz optical signal, increases the noise by 120 dB. On this basis it has been predicted that, using even
the best available reference oscillator, it is impossible to multiply in a single step from the radio frequency domain
into the optical [25]. The frequency comb does just that but avoids the predicted carrier collapse. In this case the
laser acts as a flywheel in the optical that does not follow the fast phase fluctuations of the reference oscillator but
averages them out. In this sense the n2 multiplication law does not apply, because it assumes a phase stiff frequency
multiplication that would correspond to an infinite servo bandwidth. Fortunately a typical free running titanium-
sapphire mode locked laser shows very good phase stability of the pulse train on its own. For averaging times shorter
than typical acoustic vibrations of several ms period, such a laser shows better phase stability than a high quality
synthesizer. It is therefore essential to use a moderate servo bandwidth for phase locking the repetition rate of a few
100 Hz at most. A small servo bandwidth may be implemented electronically by appropriate filtering or mechanically
by using larger masses than the usual tiny mirrors mounted on piezo transducers for high servo speed. In some case
a complete one inch mirror mount has been moved for controlling the repetition rate [64].

Controlling the carrier envelope frequency requires some effort. Experimentally it turned out that the energy of
the pulse stored inside the mode locked laser has a strong influence on ωCE . After initial explanations of this effects
turned out to be too crude, more appropriate mechanisms have been found [65]. Conventional soliton theory [66]
predicts a dependence of the phase velocity but no dependence of the group velocity on the pulse peak intensity. Any
difference in the cavity round trip phase delay and the cavity round trip group delay results in a pulse to pulse carrier
envelope phase shift and therefore a non-vanishing ωCE . However, the intensity dependence of that effect may turn
out to have the wrong sign [67]. The reason is that higher order effects, usually neglected in the conventional soliton
theory, play an important role.

To phase lock the carrier envelope offset frequency ωCE , one uses an actuator, in most cases an acousto-optic
modulator, that drains an adjustable part of the pump laser power. Electro-optic modulators have also been used,
but they have the disadvantage that they need to a bias voltage that wastes some of the pump energy to work in the
linear regime. To servo control the phase of the ωCE component usually requires much more servo bandwidth than
locking the repetition rate. How much is needed in practice depends on the type of laser, the intensity and beam
pointing stability of the pump laser and the phase detector in use.

In most cases a simple mixer is not sufficient to unambiguously detect the phase of ωCE relative to a reference
oscillator as the expected in-loop phase fluctuations are usually much larger as for the ωr servo. Prescalers or forward-
backward counting digital phase detectors may be used to allow for larger phase fluctuations, that in turn allow the
use of moderate speed (several 10 kHz) electronics. A complete circuit that has been used for that purpose very
successfully is published in [68]. Stabilizing the carrier envelope frequency, even though it generally requires faster
electronics, does not have the stability and accuracy issues that enter via the repetition rate due to the large factor
n in (4). Any fluctuation or inaccuracy in ωCE just adds to the optical frequencies rather than for ωr in the radio
frequency domain where it is subsequently multiplied by n.

Finally it should be mentioned that none of the controls discussed here acts solely on either frequency ωCE and ωr.
In general a linear combinations of the two is affected. In practice this turns out to be not important because the
different speeds of the two servo systems ensure that they don’t influence each other.

D. Measurement of the 1S – 2S frequency in atomic hydrogen

Measuring the frequency of the dye laser used for hydrogen 1S – 2S spectroscopy at ωL with a stabilized frequency
comb, involves the creation of yet another beat note ωb with the comb (see Fig. 7). For this purpose the beam of the
cw laser is matched with the beam that contains the frequency comb, say with similar optics components as used for
creating the carrier envelope beat note. A dichroic beam splitter, just before the grating in Fig. 12, could be used to
reflect out the spectral region of the frequency comb around ωL without affecting the beat note at ωCE . This beam
would then be fed into another set-up consisting of two polarizing beam splitters, one half wave plate, a grating and
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FIG. 14: (left) — Two different samples of the optical frequency fL = ωl/2π of the 486 nm dye laser locked to a reference cavity
with the self-referenced f − 2f frequency comb. As a radio frequency reference we used either the transportable fountain clock
FOM from BNM-SYRTE Paris or a commercial Cs atomic clock (Agilent model HP5071A). A linear drift is removed from the
displayed data. (right) — Allan deviation for the data shown at the left part of the figure. Solid squares and circles represent
raw data, while the hollow symbols correspond to data with subtracted linear drift.

a photo detector for an optimum signal to noise ratio. The frequency of the cw laser is then given by

ωL = nωr ± ωCE ± ωb (13)

where the same considerations as above apply for the sign of the beat note ωb. These signs may be determined by
subsequently introducing small changes to ωr and ωCE and observing the corresponding shift in ωb. This uniquely
fixes both signs if ωL is held fixed during this test.

The last quantity that needs to be determined is the mode number n. If the optical frequency ωL is already known
to a precision better than the mode spacing, the mode number can simply be determined by solving the corresponding
equation (13) for n and picking the nearest integer. For hydrogen this poses no difficulty since the 1S – 2S transition
frequency has been known for decades with a much better accuracy than the 800 MHz mode spacing used here.
Therefore determining n from the previous result should yield a value n very close to integer. If this method fails a
coarse measurement could be provided by a wave meter for example if its resolution and accuracy is trusted to be
better than the mode spacing of the frequency comb. In our 2003 hydrogen measurement for example we determined
n = 770 644 for a chosen ωr = 2π × 800MHz and ωCE = 2π × 40 MHz. The beat frequency ωb then turs out to be
around 35.7 MHz with the laser tuned close to the F = 1 → F = 1 hyperfine component of the 1S – 2S transition.

For both the 1999 and 2003 measurements, a transportable Cs fountain clock (FOM) from BNM-SYRTE (now
called LNM-SYRTE) Paris [69] has been installed at MPQ, Garching. This clock operates with an Allan deviation of
1.8× 10−13τ−1/2, where τ measures the averaging time in seconds. Its accuracy has been evaluated to 8× 10−16 [70],
but during the experiments in Garching, a verification only at the level of 2× 10−15 has been performed which is still
one order of magnitude better than required for the 1S – 2S transition.

A series of measurements with the 486 nm dye laser locked to the horizontal reference cavity is shown in Fig. 14. For
comparison we show data obtained with a commercial Cs atomic clock (Agilent model HP5071A) and the fountain
clock. The superior short term stability of the latter can be seen immediately from these data. In addition a rapid
variation due to the Cs clock and the long term drift of the reference cavity can be distinguished and subtracted from
the data. To further average the short term stable reference cavity with the absolute accuracy of the Cs clock we
fit parabolas to 500 s intervals of the reference cavity frequency data. This choice has been made by observing the
Allan variance of the Cs clock in comparison with the Allan variance of the reference cavity (see Fig. 14 (right)). The
averaging procedure uses time tags recorded with each data point, that also contain the Lyman-α count rate. The
fitted parabola then determines the average cavity frequency as a function of time within the 500 s interval. For the
data analysis the parabolas are used instead of the direct measurements of ωL, knowing the AOM detuning between
the laser and the reference cavity (see Fig. 7).

The hydrogen 1S – 2S florescence data analyzed in this way has been obtained during 10 days in 1999 [71] and
12 days in 2003 [9]. For comparability, both data sets have been analyzed using the same theoretical line-shape
model [4] (see Fig. 8 (left)). The line centers obtained from one day of data collection are presented in Fig. 15 (left)
as an example. Plotted as a function of laser power the ac Stark shift becomes clearly visible. To remove this
systematic shift we fit a linear function and extrapolate to zero power. The same procedure is repeated for every data
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FIG. 15: (left) — Line centers found from the measurement of the 1S – 2S absolute frequency during one day as a function of
laser power to determine the ac Stark shift. Using a linear fit we derive the transition frequency at zero excitation intensity.
(right) — Result of 10 days of measurement in 1999 and 12 days in 2003. The error bars represent statistical uncertainty for
each day only. The 1999 and 2003 averaged results are calculated without weighting with these error bars. According to this
data an upper limit on the drift rate of the hydrogen 1S – 2S absolute frequency of (−3.2± 6.3)× 10−15 yr−1 may be derived.

taking day to obtain the complete data set shown at right hand side of Fig. 15. The error bars are calculated as the
standard deviations of the mean values and do represent the respective statistical uncertainty only. In comparison this
uncertainty was significantly reduced for the 2003 data set due to a narrower laser line width and a better signal-to-
noise ratio. However, the variance of the day averages did not reduce accordingly in order to have roughly 2/3 of the
error bars overlapping as required for good statistics. We conclude that an uncompensated varying systematic shift
has entered the data. We believe to have identified two contributions caused by deviations of the laser and the atomic
beam from cylindrical symmetry. This may give rise to a residual first-order Doppler shift. Later measurements
performed without the fountain clock with a deliberately introduced asymmetry in the 243 nm cavity indicate an
adjustment-dependent frequency shift. In addition having the atomic and the laser beam not exactly centered on axis
may influence the laser power calibration, because the latter detects a value integrated over the transverse dimension
of the enhancement cavity mode whereas the atoms may sample the laser field with a different weight according to
their spatial distribution. These effects should average out after multiple re-adjustments of the spectrometer, which
has been performed typically twice a day. Unfortunately it is impossible to correct the data a posteriori because such
details of the spectrometer adjustment were not recorded during the measurement. Other effects which can cause a
systematic shift (intra-beam pressure shift, background gas pressure shift, Stark shift of the hyperfine levels induced
by the rf gas discharge, stray electric fields) have been checked and can be excluded on the level of the observed day
to day variance.

Because of these problems with the statistical error bars, the 1999 and 2003 day-dependent data were averaged
without using them as a weight. The 2003 average value for the F = 1, mF = ±1 → F ′ = 1, m′

F = ±1 component

Contribution fH,1999 σH,1999 fH,2003 σH,2003

[Hz] [Hz] [Hz] [Hz]
Extrapolated value − 2 466 061 102 474 kHz 870 36 851 25
Background gas pressure shift 10 10 0 2
Intra-beam pressure shift 0 10 0 10
Line shape model 0 20 0 20
DC Stark shift 0 5 0 5
Blackbody radiation 0 1 0 1
Standing wave effects 0 10 0 1
Intensity zero uncertainty 0 1 0 0
Fountain clock uncertainty 0 5 0 5
Total − 2 466 061 102 474 kHz 880 45 851 34

TABLE I: Results of the (1S, F = 1, mF = ±1 → 2S, F ′ = 1, m′
F = ±1) transition frequency measurement (fH,1999, fH,2003)

and uncertainty budgets (σH,1999, σH,2003) for the 1999 and 2003 measurements correspondingly.
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of the hydrogen 1S – 2S transition is determined as

fH = 2466 061 102 474 851 (34)Hz (14)

This result along with the 1999 value and the main statistical and systematic uncertainties are summarized in Table I.
It should be noted that the 2003 measurement did not yield a significant reduction of the overall uncertainty. The
two results are in agreement within their mutual uncertainties and can be used as an upper limit on a possible slow
variation of that transition frequency. We obtain an upper limit of the difference of (−29 ± 57) Hz between the
measurements that are 44 months apart. This is equivalent to a fractional time variation of the ratio fH/fCs equal to
(−3.2 ± 6.3) × 10−15 yr−1, where the ground state hyperfine splitting of 133Cs, which is used as a reference in these
measurements, is given by fCs. We will use this result for further analysis in Section V.

IV. DETERMINATION OF FUNDAMENTAL ATOMIC PARAMETERS

During the last decades, a number of high-precision experiments employing two-photon spectroscopy of the 1S –
2S transition in atomic hydrogen and deuterium have been performed. These measurements have been motivated
by the possibility to check highly accurate QED calculations and to derive atomic parameters such as the Rydberg
constant R∞. In this section we briefly present the analysis of the world hydrogen data for that purpose and a recent
measurements of the 2S hyperfine structure.

A. The Rydberg constant and the Lamb shift

The hydrogen atom offers the best opportunity to precisely determine the Rydberg constant R∞ which scales all
atomic energy levels. Since it is made up of other fundamental constants, it can be used as a corner stone to adjust the
set of all fundamental constants such that their recommended values are in best agreement with existing experimental
data [72]. Strictly speaking the Rydberg constant scales only the Dirac energies correctly. Recoil corrections and
higher order terms, known as the Lamb shift, scale with powers of the fine structure constant and the electron to
proton mass ratio. The latter can be determined with very high accuracy by storing electrons and protons in a Penning
trap and compare their cyclotron frequencies [73]. Therefore at least two different hydrogen frequency measurements
are required to determine the remaining two parameters. One common way to analyze the world hydrogen data is
to express the experimental data in terms of the Rydberg constant and the Lamb shifts of the involved levels. The
Lamb shift values are than interpreted as a test of QED.

Extended reviews of radio frequency and optical measurements of different transitions in atomic hydrogen are
presented in [2, 74]. Besides the precise determination of the absolute frequencies of the 1S – 2S and the 2S – nS, D
(with n = 8, 10, 12) transitions, radio frequency data of adjacent S and P levels [75] as well as combinations of
optical frequencies enter this analysis. The latter method exploits the crude scaling of hydrogen energy levels with the
inverse principal quantum number n squared. This allows to excite optical transitions with almost integer ratios of
frequencies that can be readily related by frequency doubling of some of the involved lasers. The recorded frequency
differences are direct measurements of the deviations from the Bohr energy levels and therefore allow the extraction of
the Lamb shifts in a simple way. Frequency combinations of this type have been measured at the Laboratoire Kastler
Brossel, Paris by comparing the 2S – 6S frequency with one quarter of the 1S – 3S, D frequencies. Along the same line
the frequencies of the 2S – 4S, P,D have been compared with one quarter of the 1S – 2S frequency at Garching [77]
and Yale [76]. In addition the analysis of the hydrogen world data uses the approximate 1/n3 scaling for the Lamb
shifts, which allows the accurate calculation of the Lamb shift differences L(1S) − n3L(nS). Combinations of all
this data, including related measurements in deuterium, allows for a least square adjustment using the quantities
of interest as a parameter. These quantities are the 1S Lamb shift L(1S) = 8 172.840(22) MHz and the Rydberg
constant R∞ = 109 737.315 685 50(84) cm−1 as derived in the described way in [2]. Because of the 1/n3 scaling law for
the Lamb shifts, its 1S value is the largest and provides the largest lever when confronting it with theoretical QED
results.

In comparison the result for the Rydberg constant from the hydrogen least squares adjustment agrees well with
the 2002 CODATA recommended value R∞ = 109 737.315 685 25(73) cm−1 [79]. This is no surprise as this estimation
draws on mostly the same input data. With its relative uncertainty of 6.6× 10−12 the Rydberg constant is the most
accurately known fundamental constant.

To compare the result of the least squares adjustment for the 1S Lamb shift with a relative uncertainty of 2.7×10−6

to QED predictions one faces the problem that the proton charge radius, that enters the theory, is not known with
sufficient accuracy. Even though this proton size correction is a small contribution to the 1S Lamb shift, it has
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the largest contribution to its uncertainty. In part this is also due to the variety of disagreeing values found in the
literature. This least squares experimental value is in a good agreement with theoretical predictions, if one assumes the
Mainz value for the proton charge radius of rp = 0.862(12) fm [80] and includes results of QED two-loop contributions
given in [81].

For further improvements it should be noted that the 1S – 2S transition frequency is known with by far the highest
accuracy. Because at least two parameters have to be determined from the hydrogen world data as explained above,
the second best measurement determines the uncertainty of all results. It is therefore advisable to try to improve
other transition frequencies besides the 1S – 2S in atomic hydrogen. One of the possibilities would be to determine
a value of the 1S – 3S frequency [82]. An experiment on measuring the 1S – 3S two-photon transition frequency in
a cold atomic beam by excitation with ps pulse train is also planned in Garching [83]. There is also an on-going
activity on improving the proton charge radius by performing spectroscopy in muonic hydrogen at the Paul Scherrer
Institute [84] and 1S – 2S in He+ at Garching [85] which can further improve values of the Rydberg constant and the
Lamb shift.

B. The 2S hyperfine structure

The frequencies of the 2S hyperfine intervals fHFS(2S) in atomic hydrogen and deuterium have been measured
several times during 20th century by driving the magnetic-dipole transition in an atomic thermal beam [86–88]. The
relative accuracy of these measurements (150-300 ppb) exceeds the accuracy of the theoretical prediction which is
restricted by insufficient knowledge of the proton structure. However, very similar to the related problem for the
Lamb shifts, a specific combination of hyperfine splittings can be calculated with much higher precision. For the 1S
and 2S hyperfine intervals this combination reads

D21 = 8fHFS(2S)− fHFS(1S) (15)

and can be calculated without detailed knowledge of the nuclear structure effects (see [8] and references therein).
Again this results from the fact, that energy correction due to a finite size of nucleus scales as ∆Enucl ∼ 1/n3 and
significantly cancels in D21. The 1S hyperfine splitting in hydrogen is one of the best known transition frequencies
and does not pose a limit to the accuracy of (15). By adding an experimental value for the 2S hyperfine interval
fHFS(2S) the resulting value for D21 can be compared with the QED value. This QED test is currently limited by
the experimental uncertainty for fHFS(2S).

For this reason we have decided to use our spectrometer for a new measurement of the 2S hyperfine interval in
atomic hydrogen and deuterium. The experimental setup is very similar to the one depicted in Fig. 7 except that for
this measurement a two layer magnetic shielding has been added to suppress the ambient field to below 1 mG. At this
low magnetic field the frequency of the 2S hyperfine splitting fHFS(2S) can be expressed through

fHFS(2S) = fHFS(1S) + f(β)− f(α) , (16)

where f(β) and f(α) are frequencies of corresponding two-photon transitions that are shown in Fig. 16. Since the
ground-state hyperfine splitting fHFS(1S) is known to a very high accuracy, both for hydrogen and deuterium, it

FIG. 16: Hyperfine and Zeeman sublevels of the 1S and 2S states in hydrogen (left) and deuterium (right) and shifts cause by
a magnetic field B.
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FIG. 17: (left) — Nearly simultaneous detection of two-photon hyperfine transitions α and β in atomic deuterium. Lines
recorded with a delay ∆τ = 610 µs and Lorentzian fits are presented. (right) — Evaluation of the difference f(α)− f(β). The
data is fitted with a pair of parallel lines so that the slope and the frequency difference can be determined.

is enough to determine the frequency difference f(β) − f(α). This difference is in the radio frequency region, so
that no absolute optical frequency measurement is required. The measurement has been performed by recording the
components f(β) and f(α) in short sequence using the horizontal reference cavity sketched in Fig. 1 as a flywheel.
The AOM shifter shown Fig. 7 allows us to change quickly between the hyperfine components.

For the measurement in hydrogen we have recorded spectral lines of transitions α and β in time intervals of a few
minutes. For measurements in deuterium we have recorded lines nearly simultaneously by alternating between the
hyperfine components for individual one second gate time data points [6]. The result of such a simultaneous scan
is shown on the left hand side of Fig. 17. We only account for Lyman-α photons with a delay of ∆τ = 610 µs as
explained in Section II B by fitting them with Lorentzians. After that we plot the frequencies of line centers against
time for both transitions α and β and determine the frequency difference by subtracting the cavity drift as shown on
the right hand side of Fig. 17. For this differential measurement, the most significant systematic effects of two-photon
beam spectroscopy cancel out. As shown in [5], the differential dynamic Stark is rejected by common mode at a level
of 10−6 relative to the shift of the 1S – 2S transition (the latter being around 500Hz). The second order Doppler effect
and line asymmetries cancel very effectively as well. The residual dc Stark shift and the magnetic fields contribute
at a level of a few hertz. The upper limit of the pressure shift has been determined experimentally by changing the
atomic flux.

FIG. 18: Specific frequency difference D21 in atomic hydrogen (left) and deuterium (right). Experimental [5, 6, 86–88] and
theoretical values [8] along with their uncertainties are presented.

Using our spectrometer the hyperfine splitting of the 2S level in atomic hydrogen and deuterium has been determined
to f

(H)
HFS(2S) = 177 556 860(16) Hz [5] and f

(D)
HFS(2S) = 40 924 454(7)Hz [6]. With this the optical measurement became

several times more accurate than the traditional radio frequency method. The resulting D21 specific frequency
differences are in a good agreement with theoretical predictions [8] as shown in Fig. 18. These tests allow to selectively
verify higher-order QED contributions beyond the 1/n3 scaling law with a sensitivity approaching QED tests in
leptonic systems (like ground-state HFS study in muonium [7]) which are virtually free from hadronic contributions.
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V. CONSTANCY OF THE FINE STRUCTURE CONSTANT AND OPTICAL CLOCKS

The question of constancy of fundamental constants was first raised in Dirac’s “large number hypothesis” (1937)
which aimed for a harmonization of the basic laws of physics [89]. Since then, this hypothesis has been reviewed
and extended by many other scientists opening a broad field of theoretical and experimental investigations. As there
is no accepted theory predicting the values of fundamental constants, the question of their possible time variation
belongs mostly to the field of experimental physics. In the last decades a number of different astrophysical, geological,
and laboratory methods have been used to search for their possible variation in different time epochs with an ever
increasing sensitivity (for details see the review [90]). From the point of view of its importance for physics in general,
these investigations are at the same level as tests of CPT-symmetry and the search for an electric dipole moment of
elementary particles.

The basic principle of every experimental search for a time variation of fundamental constants is the measurement
of a physical quantity Φ(γ1, · · · , γK , t), which is a function of several fundamental constants γi, at times t1 and t2,
separated by the interval ∆t = t1 − t2. If Φ(γ1, · · · , γK , t) is a function of more than one constant (K > 1) it is not
possible to derive separate values for ∆γi even if the dependence of Φ on γi is straightforward. However, repeated
measurements on several physical quantities Φj with j = 1, · · · , N and (N ≥ K) or assumptions on restrictions or
mutual correlations of the constants of their drifts may be used to derive all ∆γi involved. Lacking any accepted
theory of the variation of fundamental constants one ideally prefers to draw conclusions with the smallest set of
assumptions.

Concerning the time interval ∆t, there are two extreme classes of experiments: (i) astronomical or geological
observations (e.g. of quasar spectra and the Oklo phenomenon [91]) and (ii) high precision laboratory frequency
comparisons of atomic, molecular or ionic transitions. The investigation of absorption or emission lines of distant
galaxies back illuminated by the white light of quasars at even larger distances takes advantage of the extremely long
look back time up to 1010 years. In contrast to that, laboratory frequency comparisons are restricted to short time
intervals of a few years but win considerably in relative sensitivity, which can be of the order of 10−15 or better.
As a result the sensitivity in terms of relative variation per year can be comparable for both classes of experiments.
Important advantages of laboratory experiments in general are: The variety of different systems that may be tested,
the possibility to change parameters of the experiments in order to control systematic effects and the straightforward
determination of the drift rates from the measured data. Modern metrology precision frequency measurements deliver
information about the stability of the to-date values of the constants, which can only be tested with laboratory
measurements. At the same time only non-laboratory methods are sensitive to processes that happened in the early
universe, which can be much more severe as compared to the present time. As both classes of experiments (i), (ii)
probe ∆γi at different epochs, they supplement each other to get a more detailed view of the possible time variation
of fundamental constants.

A. Astrophysical and geological methods: a brief review

Due to the large look back time the sensitivity of astrophysical and geological methods to monotonic long-time drifts
is very high. A recent analysis of quasar absorptions of redshifted UV transition lines [92] indicates a variation of α
at the level of ∆α/α = (−0.54± 0.12)× 10−5 in the first half of the evolution of the universe (5–11 Gyr ago) [92, 93].
There are also indications that during this period, the electron to proton mass ratio was different from its current
value on the same level of 10−5 [94, 95]. The analysis of astrophysical data requires a number of model assumptions
which include not only the well-established scenarios of the evolution of the universe, but also assumptions about
isotope abundances in interstellar gas clouds, the presence of magnetic fields and others (see the review [90]) which
are difficult to verify. More recent observations of quasar absorption spectra [96, 97], performed by different groups,
seem to rule out a variation of α at this level but their data has very recently been partially re-analyzed leading to
different conclusions [98].

A very stringent limit for the time variation of α on geological time scales derives from the analysis of isotope
abundance ratios in the natural fission reactor of Oklo, Gabon, which operated about 2 Gyr ago. A recent re-analysis
of the 149Sm/147Sm isotope abundance ratio sets a limit of ∆α/α = (−0.36± 1.44)× 10−8 [91]. There were attempts
to use a model of a “damped oscillator” [99] to fit both Oklo data [91] and results derived form quasar absorption
spectra [92, 93]. The interpretation of the Oklo data is not unambiguous, as the result strongly depends on reactor
operating conditions which are not exactly known. Selecting another possible reaction branch yields a value of
∆α/α = (9.8± 0.8)× 10−8 [91]. In contrast to the first one, this result indicates a non-zero drift.
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B. High-precision laboratory measurements and variation of the fine structure constant

So far all laboratory measurement of the drift rates of fundamental constants are based on comparisons of electro-
magnetic transitions that depend in a different way on these constants. The non-relativistic scalings of gross-, fine-
and hyperfine transitions in atoms, ions and molecules are summarized in Table II. In contrast to the previous Sections
on high precision measurements a first order theory is sufficient here, as none of the drifts have been detected yet with
small relative uncertainty. To evaluate the possible drift of α one measures a frequency ratio of two transitions of
different types, for example a gross structure and a fine structure component. Pioneering astrophysical measurements
of the α drift [100, 101] used exactly this method which is now called the “alkali-doublet method”.

Sample Transition Scaling factor
Atom, ion

gross structure Ry
fine structure α2Ry
hyperfine structure gnucl(µN/µB)α2Ry

Molecule
gross structure Ry

vibration structure (me/mp)1/2Ry
rotatoinal structure (me/mp)Ry

TABLE II: Scaling factors for different atomic systems in non-relativistic approximation. Here Ry is the Rydberg constant
in hertz, gnucl is the nuclear g-factor, µN and µB – nuclear and Bohr magnetons respectively, me and mp – electron and
proton mass respectively. In the relativistic case, i.e. for heavier atoms, it is necessary to multiply the scalings with relativistic
correction Frel(Zα) that depends only on the fine structure constant and may be determined from relativistic Hartree-Fock
calculations.

In the first laboratory measurements of α, the stability of frequency ratios between two hyperfine transitions in
the radio frequency domain have been studied (see [102–104]). Ground-state hyperfine transitions in atoms and ions
have very high Q-factors and allow a high sensitivity of these measurements. In the non-relativistic approach α
should cancel according to the scaling given in Table II. However, in a real situation the values in that table need
to be multiplied with a relativistic correction Frel(Zα) that depends only on the fine structure constant and may
be determined from relativistic Hartree-Fock calculations. Taking this into account the ratio of hyperfine transition
frequencies do indeed show a dependence on α so that it becomes possible to evaluate α̇ from such a comparison. For
alkali atoms there exists an approximate expression for the relativistic correction called the Casimir correction [105]
which reads as

Frel(Zα) =
3

λ(4λ2 − 1)
, where λ ≡

√
1− (Zα)2 . (17)

For heavy atomic systems Frel(Zα) significantly differs from 1 (e.g. Frel=1.39 for Cs) and possesses high sensitivity
for α variations:

L(HFS)
α ≡ α

∂

∂α
ln[Frel(Zα)] = (Zα)2

12λ2 − 1
λ2(4λ2 − 1)

. (18)

A more exact calculation of the relativistic corrections will result in insignificant deviations from (18). For example,
a more precise treatment of the relativistic correction to the Cs ground state hyperfine splitting yields Lα = 0.8 [106]
whereas the Casimir correction from (18) gives Lα = 0.74. This small deviation does not significantly influence the
accuracy of α̇ evaluations because it is mostly restricted by experimental uncertainties. One of the most sensitive tests
of this type has been performed by A.Clairon’s group at LNE-SYRTE, Paris where they compared frequencies of a Rb
and a Cs atomic fountain clock [107]. This measurement resulted in ∂/∂t(α−0.44gRb/gCs) = (0.2± 7.0)× 10−16 yr−1.

Unfortunately for optical transition frequencies f (opt) no such approximation as the Casimir correction exists that
would be useful for deriving the leading order dependence on the fine structure constant. For this reason relativistic
Hartree-Fock calculations have been used. V.Dzuba et al. have expressed the results of their calculation in terms of
two parameters q1 and q2 according to:

f (HFS) = f
(opt)
0 + q1

[(
α

α0

)2

− 1

]
+ q2

[(
α

α0

)4

− 1

]
. (19)
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Z Atom Transition λ [nm] L
(opt)
α

1 H 1s S1/2(F = 1, mF = ±1) → 2s S1/2(F
′ = 1, m′

F = ±1) 121 0
20 Ca 1S0(mJ = 0) → 3P1(mJ = 0) 657 0.03
49 In+ 5s2 1S0 → 5s5p 3P0 237 0.21
70 Yb+ 6s 2S1/2(F = 0) → 5d 2D3/2(F = 2) 435 0.9
80 Hg+ 5d106s 2S1/2(F = 0) → 5d96s2 2D5/2(F

′ = 2, m′
F = 0) 282 −3.2

TABLE III: Sensitivity of relativistic corrections Frel(Zα) to α for some atomic transitions according to [106, 108].

Here f
(opt)
0 and α0 are the present day (or laboratory) values of the optical transition frequency and the fine structure

constant respectively. This equation was used to describe quasar absorption spectra but may be used for laboratory
measurements in which case f

(opt)
0 and α0 are also laboratory values but at different times. Results for the parameters

q1 and q2 for various atoms and ions including some important optical clock transitions are published in [106, 108].
Only even powers in α enter the expansion (19) because the relativistic correction is proportional to

√
m2

e + p2, which
contains even powers of electron momentum p ∼ Zα. Re-expressing V. Dzuba’s notation in terms of the relativistic
correction introduced above yields:

L(opt)
α ≡ α

∂

∂α
ln Frel(Zα) =

2q1 + 4q2

f
(opt)
0

. (20)

Table III lists a few values of this quantity, that have been obtained in Refs. [106, 108] and are relevant for metrological
transitions. Note, that for these calculations the value of Ry has been assumed to be fixed which imposes a constrain
on the value of the product mec

2α2/h. However, another way of interpreting this is by picking Ry as the unit of
frequency. Using the same units for all frequencies it will eventually drop out of all calculations and experimental
data since in both cases, only frequency ratios are determined. This will become more clear from the analysis in the
next Section.

Just as with the hyperfine structure, comparing optical transitions with different relativistic corrections becomes
a powerful instrument to set an upper limit to the drift of fundamental constants. This method is widely used in
astrophysical observations (“many-multiplet” method [92]) and in laboratory comparisons. An elegant realization
of this method has been used by A. Cingöz et al. [109], by utilizing different relativistic corrections of two nearly
degenerate levels of opposite-parity in neutral dysprosium. Monitoring the radio frequency transitions at 3.1MHz for
163Dy and 325MHz for 162Dy during 8 month only, the authors set a stringent limit on the drift of the fine-structure
constant of ∂ ln(α)/∂t = (−2.7 ± 2.6) × 10−15 yr−1 without any assumptions about the drift of other constants. In
the next Section we will describe how one can deduce a model-independent restriction to α̇ from different absolute
optical frequency measurements.

C. Upper limit for the drift of the fine structure constant from optical frequency measurements

The determination of absolute optical frequencies means that these frequencies are measured in hertz, i.e. they are
compared with the Cs ground state hyperfine splitting. For this a ratio like f (opt)/f

(HFS)
Cs is determined. According to

Table II such a ratio depends on two fundamental constants, α and the Cs nuclear magnetic moment measured in Bohr
magneton’s µCs/µB . One may argue that the latter is not a fundamental quantity, but one has to keep in mind that
the nuclear moment is mostly determined by the strong interaction. In that sense it measures the strong interaction
in some units. The only difference to the electromagnetic interaction measured by α is that, lacking a precise model
for the Cs nucleus we are not sure what those units are. For this reason there are two parameters that need to be
determined from an absolute optical frequency measurement and it is impossible to disentangle contribution from the
drift rate of just one absolute optical frequency. As an example consider the frequency measurement of the 1S – 2S
transition in atomic hydrogen (see Fig. 15 (right) and Table I), for which the following expression for the relative drift
rates derives [9]:

− ∂

∂t
ln

f
(opt)
H

f
(HFS)
Cs

=
∂

∂t

[
ln

(
µCs

µB

)
+ (2 + 0.8) ln α

]
=

= y + 2.8x = (3.2± 6.4)× 10−15 yr−1 , (21)
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where the fractional time variations have been denoted by y ≡ ∂ ln(µCs/µB)/∂t and x ≡ ∂ ln(α)/∂t respectively.
From this relationship one can constrain a combination of the fractional time variation of µCs/µB and α only. So far
sufficiently precise hydrogen data has been obtained in 1999 and in 2003.

Between July 2000 and February 2006 the frequency of the electric quadrupole transition 5d106s 2S1/2 (F = 0) –
5d96s2 2D5/2 (F ′ = 2,m′

F = 0) at λ = 282 nm of a single laser cooled 199Hg+ ion was measured relative to a
Cs-controlled hydrogen maser using the fs frequency comb technique [110]. These measurements have been performed
in J. Bergquist’s group at NIST resulting in a fractional frequency change of (0.2±7.0)×10−15 yr−1 if one considers only
data taken during the period from July 2000 through December 2002 [111]. Including more recent measurements, the
accuracy has been significantly improved such that for the whole period of measurements July 2000 to February 2006
the relative frequency ratio drift becomes experimentally limited to ∂ ln(f (opt)

Hg /f
(HFS)
Cs )/∂ t = (0.37±0.39)×10−15 yr−1.

Rewriting this restriction in terms of x and y (see (21)) one gets

− ∂

∂t
ln

f
(opt)
Hg

f
(HFS)
Cs

=
∂

∂t

[
ln

(
µCs

µB

)
+ (2 + 0.8 + 3.2) ln α

]
=

= y + 6x = (−0.37± 0.39)× 10−15 yr−1. (22)

At PTB, Braunschweig, Germany the frequency of the 6s 2S1/2(F = 0) – 6s 2D3/2(F = 3) electric quadrupole
transition at λ = 436 nm of a single trapped and laser cooled 171Yb+ ion was measured relative to a Cs controlled
hydrogen maser using the fs frequency comb technique. The measurements that were performed by C. Tamm, E.Peik
and co-workers between December 2000 and June 2006 resulted in a fractional frequency variation of (0.78± 1.40)×
10−15 per year [112, 113]:

− ∂

∂t
ln

f
(opt)
Yb

f
(HFS)
Cs

=
∂

∂t

[
ln

(
µCs

µB

)
+ (2 + 0.8− 0.9) ln α

]
=

= y + 1.9x = (0.78± 1.4)× 10−15 yr−1. (23)

In total the there are three independent laboratory drift measurements (21), (22) and (23) performed in overlapping
time periods all of them consistent with zero drift. In order to use the hydrogen data, that enters now with the smallest
weight, a linear drift scenario has to be assumed as the epochs only partially overlap.

Results of these measurements are shown in Fig. 19 (left), where the abscissa shows the sensitivity of the corre-
sponding relativistic correction to a variation of α. Each of these measurement restricts the drift of a combination of
different fundamental constants only. Of course it is desirable to disentangle individual contributions of the coupling
constants. To solve this problem it may be assumed that only one coupling constant varies while other constants
involved are fixed. However, within the framework of grand unification theories the strong, weak and electromag-
netic coupling constants are expected to merge for higher energies. Therefore one expects that they can not vary
independently. Assuming grand unification one can even derive a relation of the drift rates of hadron masses and
nuclear g-factors that are determined by the strong interaction, and the relative drift rate of the fine structure con-
stant: ∆mp/mp ≈ ∆gnucl/gnucl ≈ ±35∆α/α [13, 114]. The sign of the magnifying constant has to determined
experimentally. Note that this relation may still be correct even if none of the constants are actually drifting.

Since there is neither an accepted model for violation of supersymmetric theory, neither a theory explaining the
origin of fermion masses, all discussions about such correlations remain strongly model-dependent. For this reason
one tries to avoid using any assumptions on correlations here. Fortunately, the dependence of the absolute optical
frequencies in (21), (22) and (23) are linearly independent in the coupling constants, i.e. in x and y. To find a common
solution including the corresponding uncertainties we assume that there are N independent experiments relating x
and y to measured values bi with uncertainties σi (one standard deviation) through:

y = Ai x + bi ± σi . (24)

Here Ai are the coefficients which represent the sensitivity of the relativistic correction to the α variations (Lα). Let
us assume Gaussian distribution of the data P (x, y):

P (x, y) ∝ e−
1
2 R2(x,y) , where R2 =

∑

i

1
σ2

i

(y −Ai x− bi)2 . (25)

The expectation values for the relative drift rates x and y are determined by the maximum likelihood method
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FIG. 19: (left) — Measured drifts of optical frequencies for different atomic transitions vs. sensitivity of the relativistic correction
to α variations. (right) — Model-independent constraints of fractional drift ratios of α and the Cs nuclear magnetic moment
measured in Bohr magneton’s µCs/µB. The stripes represent experimental 1-σ restrictions deduced from different independent
measurements. The ellipse defined by R = 1 restricts the two-dimensional 1-σ area for the mean of x and y.

corresponding to the minimum of R2(x, y):

∂R2

∂x
= −2

∑ 1
σ2

i

(y −Ai x− bi)Ai = 0

∂R2

∂y
= −2

∑ 1
σ2

i

(y −Ai x− bi) = 0 .

(26)

With the definitions B1 ≡
∑

1/σ2
i , B2 ≡

∑
A2

i /σ2
i , B3 ≡

∑
b2
i /σ2

i , B4 ≡
∑

Ai/σ2
i , B5 ≡

∑
bi/σ2

i , B6 ≡
∑

Ai bi/σ2
i

we can solve system (26) for x and y and obtain expressions for the expectation values:

〈x〉 =
B4 B5 −B1 B6

B1 B2 −B2
4

, 〈y〉 =
B2 B5 −B4 B6

B1 B2 −B2
4

. (27)

The standard deviation for 〈x〉 can be calculated from the integral:
∫ +∞

−∞
e−

1
2 R2(x,y)dy ∝ exp

[
(B5 + xB4)2 −B1(B3 + x (x B2 + 2B6))

2B1

]
. (28)

Rewriting the exponent

exp
[
− (x− 〈x〉)2

2σ2
x

+ constx

]
, (29)

one gets the standard deviation for x

σx =

√
B1

B1 B2 −B2
4

(30)

and, similarly, for y

σy =

√
B2

B1 B2 −B2
4

. (31)

With this and the experimental data from (21), (22) and (23), stringent restrictions for fractional variations of the
fundamental constants can be derived [110]:

x =
∂

∂t
ln α = (−0.30± 0.35)× 10−15 yr−1 , (32)

y =
∂

∂t
ln

µCs

µB
= (1.5± 2.0)× 10−15 yr−1 . (33)
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A graphical representation of the solution is shown in Fig. 19 (right). The ellipse defined by R = 1 restricts the 1σ
area that is compatible with all observations. Projections of the ellipse on the axes give separate values for x and y
as presented in (32) and (33) respectively. The result for the temporal variation of the fine structure constant now
imposes a limit that is significantly smaller than drift rates derived from quasar absorption spectra [92, 93]. These
astrophysical investigations correspond to the linear drift rate of (∂/∂t) ln α = 0.64 ± 0.14 × 10−15 yr−1 which is on
the same level of sensitivity as the result of combined optical frequency measurements (32). However, as mentioned
above, the two data sets are not strictly comparable as they probe on different epochs.

An extended time interval separating optical frequency measurements will improve the sensitivity of this laboratory
test even further. Another promising route would be a direct comparison of two optical frequencies using the frequency
comb without primary Cs reference [110]. In this case variations of the fine structure constant are probed independently
because no nuclear magnetic moment enters.

VI. FURTHER PROSPECTS

The development of more stable and compact laser systems for the 1S – 2S spectroscopy in atomic hydrogen opens
an opportunity to perform spectroscopy on exotic simple atomic systems whose production or use is not possible at
our Garching laboratories. This will require a new laser system to be set up close to the production and/or storage
place. Together with a compact fiber-based frequency comb referenced to the GPS time signal, such a system will
allow to perform absolute frequency measurements at any host laboratory. For example, experiments to study the
1S – 2S spectroscopy in anti-hydrogen are prepared by the collaborations ATHENA (ALPHA) [115] and ATRAP [116]
at CERN. A comparison between hydrogen and anti-hydrogen spectra should provide one of the most stringent tests
of the CPT theorem. A frequency measurement of the 1S – 2S transition in tritium could provide new independent
information on the triton charge radius and its polarizability [117]. In addition, there are projects aiming for optical
spectroscopy of positronium and muonium [118, 119].

The accuracy of the 1S – 2S transition is presently limited by contributions of the spatially varying ac Stark shift
and residual Doppler effects. To increase the accuracy and investigate other possible systematic shifts in more detail
it is highly desirable to reduce the excitation power at 243 nm and select even slower atoms from the Maxwellian
distribution. It has been shown [33], that along with excitation of the 1S – 2S transition we can efficiently ionize
the 2S state with the same laser beam. Since the detection efficiency for protons is much higher than for Lyman-α
photons at nearly the same background count rate, one can detect signals from slower atoms or from atoms excited
at lower excitation powers. We presently work on delayed proton detection, with the excitation cycle separated from
ionization/detection cycle by hundreds of microsecond. Preliminary experiments show that this idea requires improved
mechanical stability of the 243 nm enhancement cavity. We plan to use the idea of compensated suspension that has
proofed to be a powerful method for the reference cavities [28].

Together with the expected new improved measurement of the proton charge radius derived from muonic hydro-
gen [84], further precision optical measurements in atomic hydrogen will deliver important experimental results for
even more precise tests of QED and other fundamental theories.
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[83] P. Fendel, Präzisionsspektroskopie an Wasserstoff und Deuterium, Ph.D. thesis (in German), Ludwig-Maximilians Uni-

versity, Munich (2005)
[84] R. Pohl et al., Hyperfine Interactions, 127, 161 (2004)
[85] M.Herrmann et al., The 1S – 2S transtion in singly ionized helium: Feasibility of high precision spectroscopy in the XUV

(to be published)
[86] J.W.Heberle, H.A.Reih, and P.Kusch, Phys. Rev. 101, 612 (1956)
[87] H.A.Reich, J.W. Heberle, and P.Kusch, Phys. Rev. 104, 1585 (1956)
[88] N.E.Rothery and E.A.Hessels, Phys. Rev. A 61, 044501 (2000)
[89] P.A.M.Dirac, Nature (London) 139, 323 (1937)
[90] J.P.Uzan, Rev. Mod. Phys. 75, 403 (2003)
[91] Y. Fujii, et al., Nucl. Phys. B, 573, 377 (2000)
[92] J.K.Webb et al., Phys. Rev. Lett 87, 091301 (2001)
[93] M.T.Murphy, J.K.Webb, V.V. Flambaum, Mon. Not. Roy. Astron. Soc. 345, 609 (2003)
[94] A. Ivanchik, A. Potekhin, and D. Varshalovich, Astron. and Astroph. 343, 439 (1999)
[95] A. Ivanchik, P. Petitjean, E.Rodriguez, and D. Varshalovich, Astrophys. Space Sci. 283, 583 (2003)
[96] H.Chand, R. Srianand, P. Petitjean, and B. Aracil, Astron. and Astroph. 417, 853 (2004)
[97] R.Quast, D.Reimers, and S.A. Levshakov, Astron. and Astroph. 415, 27 (2004)
[98] M.TMurphy et al., arXiv:astro-ph/0612407 v1 and arXiv:astro-ph/0611080 v3
[99] Yasunori Fujii, Phys. Lett. B 573, 39 (2003)

[100] M.P. Savedoff, Nature, 178, 689 (1956)
[101] R.Minkowski and O.C.Wilson, Astrophys. J. 123, 373 (1956)
[102] N.A.Demidov et al., in Proceedings of the 6th European Frequency and Time Forum, Noordwijk, The Netherlands, 1992,

(European Space Agency, Noordwijk, 1992), 409 (1992)
[103] L.A.Breakiron, in Proceedings of the 25th Annual Precise Time Interval Applications and Planning Meeting, NASA

Conference Publication No. 3267 [U.S. Naval Observatory Time Service Department (TSSI), Washington DC, 1993], 401
[104] J.D. Prestage, R.L. Tjoelker, and L. Maleki, Phys. Rev. Lett. 74, 3511 (1995)
[105] H.B.G.Casimir, On the Interaction Between Atomic Nuclei and Electrons, Freeman, San Francisco, 54 (1963)
[106] V.A.Dzuba, V.V. Flambaum, and J.K.Webb, Phys. Rev. A 59, 230 (1999); Phys. Rev. Lett. 82, 888 (1999)
[107] H.Marion et al., Phys. Rev. Lett. 90, 150801, (2003)
[108] V.A.Dzuba and V.V. Flambaum, Phys. Rev. A 61, 034502 (2000)
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