Dr. Martin Schütz

From MPQTheory

Jump to: navigation, search
No picture
Address

Department of Physics
Harvard University
17 Oxford Street
02138 Cambridge, MA, USA


Research
My scientific interests lie at the broad interface between condensed matter physics, AMO and quantum optics, with an emphasis on potential implementations of quantum information processing in realistic physical systems. The basic motivation for this work is two-fold: First, to develop novel quantum devices (quantum computers, simulators, sensors etc.) which hold promise of revolutionary technological capabilities, and second, to advance the fundamental theoretical tools for an improved understanding and a simple, yet realistic description of these kind of systems.


PhD Thesis


Publications

  1. M.J.A. Schuetz*, J. Knörzer*, G. Giedke, L.M.K. Vandersypen, M.D. Lukin, J.I. Cirac. "Acoustic Traps and Lattices for Electrons in Semiconductors", arXiv:1705.04860. *These authors have contributed equally to this work.
  2. M.J.A. Schuetz, G. Giedke, L.M.K. Vandersypen, and J.I. Cirac. High-Fidelity Hot Gates for Generic Spin-Resonator Systems, Phys. Rev. A 95, 052335 (2017); arXiv:1607.01614.
  3. M. Benito*, M.J.A. Schuetz*, J.I. Cirac, G. Platero, and G. Giedke. Dissipative Long-Range Entanglement Generation between Electronic Spins, Phys. Rev. B 94, 115404 (2016); arXiv:1603.01130. *These authors have contributed equally to this work.
  4. M.J.A. Schuetz, E.M. Kessler, G. Giedke, L.M.K. Vandersypen, M. D. Lukin, and J.I. Cirac. Universal Quantum Transducers based on Surface Acoustic Waves, Phys. Rev. X 5, 031031 (2015); arXiv:1504.05127. Highlighted in APS Physics.
  5. M.J.A. Schuetz, E.M. Kessler, L.M.K. Vandersypen, J.I. Cirac, and G. Giedke. Nuclear Spin Dynamics in Double Quantum Dots: Multi-Stability, Dynamical Polarization, Criticality, and Entanglement, Phys. Rev. B 89, 195310 (2014); arXiv:1403.6145. Selected as Editor's Suggestion.
  6. M.J.A. Schuetz, E.M. Kessler, L.M.K. Vandersypen, J.I. Cirac, and G. Giedke. Steady-State Entanglement in the Nuclear Spin Dynamics of a Double Quantum Dot, Phys. Rev. Lett. 111, 246802 (2013); arXiv:1308.3079.
  7. M.J.A. Schuetz, E.M. Kessler, J.I. Cirac, and G. Giedke. Superradiance-like Electron Transport through a Quantum Dot, Phys. Rev. B 86, 085322 (2012); arXiv:1206.2573.
  8. S. Langer, M.J.A. Schuetz, I. McCulloch, U. Schollwoeck, and F. Heidrich-Meisner. Expansion velocity of a one-dimensional, two-component Fermi gas during the sudden expansion in the ballistic regime, Phys. Rev. A 86, 043618 (2012); arXiv:1109.4364.
  9. T.S. Schmidt, M. Schneider, K.S. Rogge, M.J.A. Schuetz, V.H. Hoffmann. The effects of climate policy on the rate and direction of innovation – a survey on the EU ETS and the electricity sector, Environmental Innovation and Societal Transitions 2, 23 (2012).
  10. M.J.A. Schuetz, M.G. Moore, and C. Piermarocchi. Trionic Optical Potential for Electrons in Semiconductors, Nature Phys. 6, 919 (2010); arXiv:1011.2477.


Books

  1. M.J.A. Schuetz. Quantum Dots for Quantum Information Processing: Controlling and Exploiting the Quantum Dot Environment, Springer Theses (2017).