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Abstract

We dewelopa schemefor quantum computation with atomic many-body states.
The systemwe have in mind consistsof a two-speciesinteracting Bose-Einstein
condensate,which, under certain conditions, behaveslike a robust two-lewel
system protected by an energy gap from higher excited levels. Using these
two statesto encale the qubit, we shov how to perform a universal set of
gquantum gatesby inducing energy shifts on the atomic levels, changing the
Raman coupling betweenatomic states and allowing tunneling betweenpairs
of condensatesFinally, we discussthe limitations of our shemeand nd that
particle lossesare an important sourceof decoherence.
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Chapter 1

In tro duction

Quantum theory is already known for more than 100 years. The rst ideas
suggestingthat quartum theory could allow for models of computation that
are more powerful than the onesusedin classicalcomputation cameup in the
beginning of the 1980s.

Richard P. Feynmanpointed out in 1982[1] that the simulation of a quan-
tum systemof N particles on a classicalcomputer cannot be donewithout an
exponertial slovdown in the e ciency of the simulation. Howewver, Feynman
proposedthat this slovdown could be avoided by using a computer exploit-
ing the laws of quantum physics. In other words, a quantum system could
e cien tly simulate a quantum system. Quantum computational models were
alsoconstructedby Benio [2]in 1982,but Deutsd arguedin [3]that Benio 's
model can be perfectly simulated by an ordinary computer.

Three yearsafter the proposal of Feynman,in 1985,David Deutsd intro-
duceda completequantum model for computation and gave a description of a
universalquantum computer[3]. He alsodevisedthe rst quantum algorithm,
Deutsd's two bit problem [3]. This wasthe rst computational problem for
which it was showvn that a quartum medanical system,i.e. a quantum com-
puter, is superior to classicalcomputers. Later on Deutsd and Jozsa[4] found
an extensionof the algorithm yielding exponertial speed-upcomparedto clas-
sical computers.

For almost 10 years, there were no major breakthroughs and quartum
computation remaineda curiosity. This situation changedin 1994,when Peter
Shor introduced his quantum algorithm for factoring integersin polynomial
time, much more e cien t than by any known classicalalgorithm. Shor'salgo-
rithm was not only a surprise for complexity theorists for which factoring is
an exampleof a hard problem for which no e cien t solution was beliewed to
exist. It is alsoa Holy Grail for eavsdroppingsecretservices sincethe security
of the most popular public key encryption systemsrelieson the assumeddi -
culty of factoring large numbers. Sincethen, a number of newalgorithms were
discovered,the most prominent of which is Grover's databaseseart algorithm

[5].
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Theseperspectivesfor practical applications motivated the seart for po-
tential implemenrtations of quantum computers. The basic requiremen for a
guantum computer is a set of quantum medanical two-lewvel systemswhich
can be initialized, coupled and measuredin a cortrolled way. Information
is stored in these two-lewel systems, named quantum bits, or qubits Many
physical systemsseemto be promising candidatesfor implemerting quartum
computation, amongthoseare singlephotons|[6], quantum dots [7], atomsand
ions [8],[9], superconducting Josephsonjunctions [10], and nuclear magnetic
resonancesamples[11]. For a review seealso[12).

One promising systemfor implemerting quartum computation are neutral
atoms. In the last few years, a great progresshas beendonein the trapping
and manipulation of neutral atoms. For instance, the atoms may be cooled
to very low temperaturesand atoms can be trapped and addressedndividu-
ally. In addition, the atoms can be initialized and manipulated to a precise
guartum state. Therefore, over the last few years,se\eral implemertations of
neutral-atom computing, exploiting various trapping methods and erntangling
interactions, have beenproposed[13],[14] most of them basedon neutral atoms
in optical lattices.

One of these proposals [9] is based on cortrolled collisions and on the
manipulation of individual atoms in a perfectly loaded lattice. With sud
an deviceit is possibleto build a universalquantum computer [9] or quantum
simulator [15. The cortrolled collisions have been demonstrated partly by
Mandel et al. [16],[17. Howewer, this proposal has someproblems, like the
lossof atoms, or most importantly, defectsin the lling of the lattice, i.e. the
number of atoms per lattice site cannot be cortrolled perfectly.

To avoid the problem of defects,we presert an approad to quartum com-
putation in which the qubits are encaled with atomic many-body states. A
promising candidate is a two-commnert Raman-coupledBose-Einsteincon-
densate.As it wasshown in reference[18], that under certain conditions, this
system has an almost degenerateground state which is separatedfrom the
excitedlevelsby an energygap. The atomic ensenble then behaveslike a two-
level systemthat could be usedto encale a qubit. Furthermore, the properties
of these states are not very sensitive to the number of particles. We explore
the idea of using thesetwo many-body statesto encale a qubit and presen a
sthemefor quartum computation.

The thesisis organizedas follows:

In chapter 2 we give a brief introduction to the basicconceptsof quantum
computation. In chapter 3 we discussthe low-energyphysics of a two-species
interacting Bose-Einsteincondensatereviewing somework donein reference
[18]. We discussthe low-energy physics of this systemand shav that under
certain conditions, the system can be regardedas a quartum two-lewel sys-
tem.Chapter 4 contains the certral part of this thesis. We presen a scheme
for guantum computation wherethesetwo many-body statesencale the qubit.



Inducing energyshifts on the atomic levels, changingthe Raman coupling be-
tweenatomic states and allowing tunneling betweenpairs of condensatesye
shawv how to realizea universalsetof quartum gates. As an examplewe design
a protocol for creating a maximally ertangled state, the singlet Bell state. In
chapter 5 we discussthe feasibility of the scheme. We analyzethe experimen-
tal requiremerts for the preparation and initialization of the qubit systemsas
well as for the realization of the quantum gates. In addition, we investigate
the e ect of decoherencelueto uctuations of the number of particles on the
presened scheme.
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Chapter 2

Brief intro duction to quantum
computation

One of the new interdisciplinary elds taking advantage of the possibilities of
guarntum theory is quantum computation. The aim is to processand transmit
information exploiting the laws of quantum physics. We give here a brief
introduction to the basic conceptsof quantum computing, sud as quartum
bits, quantum operations and universality. For this chapter [19 and [20] may
serne as generalreferences.

2.1 Quantum bits

In classicalcomputation, the basic unit of information is the bit, which can
have two possiblestates, 0 and 1, e.g. realized by a full or empty capacitor.
Thinking about computation basedon the laws of quantum medanics, it is
natural to take as basic unit the correspnding quantum medanical system,
i.e. a systemwith two basisstates, usually denotedj Oi andj1i. This canbe
any (e ectiv e) two-lewel system,like a spin, someatom or ion in its ground or
an excited state, the polarization of a photon, or, asin this thesis,the ground
and excited state of a many-body system. In correspndenceto the classical
bit, sud an two-lewel systemis called a quantum bit, or qubit [21].

The outstanding property of a qubit is, that, in cortrast to the classical
bit, it is not restricted to be in either the state O or 1{as a quartum system,
it canbe in any superposition of the state vectorsj 0i andj 1i,

j 1= jOi+ jli; (2.1)
with complexcoe cients and ,j j2+j j2= 1.

Talking of a single qubit, it can be usefulto think of the qubit asa point
( ; ) onaunit spherecalled Bloch sphere. For this purpose,the qubit state
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J 10 (2.1) is rewritten in the form
joai = coséj 0i + € sin Qj 1i; (2.2)
where canalways be takenreal by properly choosingthe unobsenable global

phase. As illustrated in gure 2.1,j ;i canbe represeted by the unit vector
(cos sin ; sin sin ; cos ), calledthe Bloch vector.

Figure 2.1: Bloch sphererepresemation of a qubit.

Still, onequbit is not enoughfor arbitrary computations. Therefore,let us
discusssomeof the featuresof a N -qubit system. Quantum medanics now
takesplacein the 2N -dimensionalHilb ert spacespannedby the product states
fj 00::0i;jOL:0i; ::;j11:1ig:! Thesestatescorrespnd to the classicallypossible
states formed by N bits. In the sameway as for one qubit, a many-qubit
systemcan be in a superposition of all thesestates, e.g.

j ni= ZN—lzz(jOQ:Oi + jOL:0i + i+ j1L:2i): (2.3)
This superposition o ers the possibility of using all classicallypossiblestates
as an input for quantum computation at only one operational step. This so
called quartum parallelismallows to run the computation on all 2N classically
possibleinput states at the sametime, which is one of the reasonsfor the
computational power of a quantum computer.

Apart from this quarntum parallelism, which also exists for one-qubit sys-
tems, the possibility of superposition additionally o ers a new resource(com-
paredto classicalcomputation) within composite systems: entanglemen. In
guantum medanics, composite systemsusually cannot be descriked by giv-
ing the states of all the subsystemsseparately that is by a product state

1The mathematical structure behind the composition of quantum systemsis the tensor
product. Hence,a vector like j00::0i hasto bereadjoi : jOi = j0i ".
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j ni=j 1i : j Yi. Someof the characteristicsof onesubsystemmay de-
pend on the state of the other subsystem,a phenomenoncalled ertanglemer.
Entanglemert is one of the characteristics of quantum theory which doesnot
existin classicalphysics. It seemdo be a key resourcein quantum information
and quantum computation [22]. A typical examplefor an ertangled state is
the singlet Bell state

. . 1 .
J Benl = %(JOJJ j10): (2.4)
Obviously, it cannot be written asa product of two one-qubit states,
j Benl 8 [ AjOi+ Ajli] [gjOi+ pjli]: (2.5)
In cortrary, (2.3) is not entangled, sinceit is a product state,
o T,
j NI = 2N:2(10|+11|) N (2.6)

2.2 Quantum operations

Similar to the classicalcasewhere computation can be decompsedinto a se-
guenceof elemenary logical gateslike AND or NOT, the ewlution of quantum
bits is descriked by the successig application of quantum gates. These are
composedout of unitary transformations and are thereforereversible. As for
classicallogic networks, there exist universal setsof quantum gates: any logic
guantum gate, i.e. any unitary acting on arbitrary many quantum bits, can
be composedout of an entangling two-qubit gate, together with the arbitrary
operations on single qubits (single-qubit gates) [20].

Eadh unitary transformation correspndsto arotation in the Hilb ert space.
The generatorsof rotations in the two-dimensionalHilb ert spaceare the Pauli

matrices

! ! !

1 0 i 1 0

o 'Y i o0 "* o0 1 ° (2.7)

0
X 1
Eadh of thesematrices generatesa rotation about the x; y; z-axis of the Bloch
sphere,respectively. Hence,ead single-qubit gate can be described by a rota-

tion of the Bloch vector about a normalizedaxis ft by an angle
Ro()=e 'z = cos; 1 isiné(ﬁ~): (2.8)

Furthermore, ead rotation within a two-dimensionalunit spherecan be
decommsedinto successig rotations about two xed non parallel axes[2Q].
Therefore,for an arbitrary transformation of the state of onequbit, it is su -
ciernt to possesswo setsof single-qubitgatescorrespnding to rotations about
two di erent axes.
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Two examplesof single qubit gatesthat directly follow from a rotation
generatedby one of the Pauli matrices (2.7), are the NOT gate (negating the
state of the qubit) and the phase-gatgwherethe state j 1i acquiresa relative
phase ). They are represeted by
! !

1 0

01 . .
10 ! 0 ¢ ! (2.9)

and result from a rotation about the x- and the z-axis, respectively.

The most famousexampleof a \univ ersal" two-qubit gateis the cortrolled-
NOT gate. It negatesthe state of the secondqubit if, and only if, the rst
qubit isin the state j 1i. Howewer, any two-qubit gate producing ertanglemert
out of an unertangled two-qubit state is universal [23],[24].



Chapter 3

Tw o0-species Bose-Einstein
condensate

This chapter providesan overview of work doneby Cirac, Lewenstein,M Imer

and Zoller [18] in which they investigate the low-energyphysicsof a trapped
gas of bosonicatoms, with two internal degreesof freedom. The physical is
describedin detail, followed by an analysisof its low energyphysics,focusingon
the structure of the groundandthe rst excitedstate. As demonstratedin [18],
in a certain regimeof parameters,thesetwo statesconsistof a superposition of
two Bose-Einsteincondensatesthat is, they are Sthreodinger-catstates. These
two states, which are later usedto encale a qubit, are the basic elemens in

the schemefor quantum computation we preser.

3.1 Hamiltonian

We consider Bose-Einsteincondensationof a trapped gas of N atoms that
are con ned by a quasi harmonic potertial, ase.g.realizedby a magnetic or
optical trap. Ead atom possesseswo internal degreesof freedom, denoted
by jAi and |Bi, which could represem two hyper ne levels. The two internal
levels are connectedby a coheren Raman-like transition, jAi $ jBi. The
interaction betweenthe atoms occursvia elastic collisions.

3.1.1 Quantum eld model

The Hamiltonian of the systemis given by

Ho = Hag + Hint + Hias; (3.1)
where
X z A " h2 1 # N
Hae = d*% "V (%) " 2+ QM 1 2x2 "i0%); (3.2)
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Y4
Hoo = 0000 Tt 60" 0 (3:3)
i;j =AB
h _ o
e = 0 @ 400%ae | T 00 e00¢ | (3.4

The Hamiltonian Hag describesthe systemin the absenceof interactions.
The rst term of Hpg refersto the kinetic energyand the secondterm to the
trapping potertial. The frequenciesare denoted! »; ! g for atomsin state jAi
and jBi, respectively.

The term H;; describes the interactions due to collisions between the
atoms. The interaction strength Uaa (Ugg) characterizescollisions between
atoms in the samestate jAi, (jBi), and Usg refersto interspeciescollisions.
The interaction strengths depend on the scattering length &’ and the mass
M of the particles like U; = 4 &aisc; i = AA; BB;AB. Throughout this thesis
repulsive interactions are considered,i.e. the scattering lengths (and there-
fore the U;) are assumedto be positive. Furthermore, it is assumedthat all
collisionsare purely elastic and consenre the internal state.

The Hamiltonian H,,s descritesa Raman transition induced by a laseror
a microwave eld detunedby from the Ramanresonance.This Josephson-
like coupling inducesa coheren transfer betweenparticlesin di erent internal
statesat an e ective Rabi frequency > 0.

The operators " (x); k = A; B; are bosonic eld operatorsthat annihilate
an atom in the internal state jki at position x. They obey the standardbosonic
commutation relations

["kG); %00

and ["a(%); "5 (x)]

(x %9 (3.5)
["%06); "L 0] = O (3.6)

3.1.2 Two-mode model

The Hamiltonian preserted above cannot be solved analytically [18. Howeer,
for low temperatures and a low density of particles [25], the system can be
descriked by a two-maode model, leading to much simpler expressiondor the
terms of the Hamiltonian (3.1). For this reasonit is assumedhat the bosonic
gasis cooled down to the ground state of the trap, sothat the motional degrees
of freedomof the atoms are frozen. As a consequencethe spatial degreesof
freedomcan be described by a single mode function, namely the ground state

o(X) of the trap. Therefore,only the dynamicsof the internal levelsjAi and
|Bi arerelevant and the eld operators are expresseds

"A09) = o(®)a and “g(%) = o(%) b; (3.7)

where a; b are bosonicannihilation operators that destroy a particle in the
internal state jAi and jBi, respectively. They satisfy the standard bosonic
comrmutation relations [a;@"] = [b;']= 1 and [a;b = [@’;P] = 0.
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This two-maode model simpli es the multimode terms of the Hamiltonian
3.1)to

HAB = h! A a’a+ h! B @Ib, (38)
Hitn = ;h@AA aa’aa+ ;h @BB b'b’bb+ hlgAB a’b’ba (39)
Has = h (&be'! '+ Paée !); (3.10)

wherethe coe cien ts U; and , derived from thosein (3.2, 3.3, 3.4) are given
by
z

d*x Uij o(*)j* i=AA;BB;AB (3.11)
z

d*x Ej o(®)j% = 5 (3.12)

5,

and

For the sake of simplicity it is assumedthat the internal statesjAi and jBi
are degenerateand that the Raman coupling is resonan, that is = 0. In
addition, it is assumedthat the trapping potertial and the scattering length
do not depend on the internal state of the atoms.

Thus we set! an = !gg I, a3 = ags ap and therefore By, =
(SN Uo. For corvenience,one can de ne a3 a; and Upp U,. Since
the number operator N = a’a+ b’b comnuteswith the Hamiltonian, the total
number of particles is consened and the term Hpag = h! X' canbe neglected.
Under theseconditions, the two-mode model Hamiltonian reads

Hy = U2°(ayayaa+ BBy + Uia@ba  (a¥b+ ba); (3.13)

wherewe seth = 1. The Hamiltonian is invariant under the exchangeA $ B.
This ideal symmetric situation is barely realizablein a real experimert, since
atoms in di erent hyper ne levels experiencedi erent Zeemanshifts in the
magnetic eld, and therefore feel di erent trapping potentials. In general,if
' A 6 ! g, onecan always compensatethe potertial di erence, choosing the
detuning =1, ! appropriately. For this reasonit should be noted that
these simpli cations only have a technical character. In [1§ it is mertioned
that by appropriately choosing the detuning , it should also be possibleto
compensatefor other e ects, like the displacemen of the traps with respect
to ead other, due to the di erent Zeemaninteractions, and to gravity.

3.2 Analysis of the two-mode model

Even the two-mode model Hamiltonian Hqy (3.13) cannot be solved exactly
by analytical methods [18. Howeer, for studying the low-energy physics of
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Ho, @ mean eld approximation can be used. Within this approximation the
ground state of the systemis studied. In particular, under certain conditions
the ground state is a Sdredinger-catstate. The Hamiltonian is diagonalized
exactly numerically for N = 200and the exactnumerical results are compared
with the mean eld solutions. Over a wide range of parameters,the results
are in good agreemen

3.2.1 Mean eld approximation

A gasof cold bosonicatomsis a weakly interacting system. Therefore,in order
to obtain an analytical expressiorfor the ground state, a reasonableapproad
is to usea mean eld Ansatz, whereit is assumedthat in the ground state of
the N -particle system,all the atoms are in the samesingle-particle state

j 1i = JjAi+ |Bi: (3.14)
and arethe probability amplitudes of the statesjAi and jBi, respectively.
Theseprobability amplitudes and satisfythe normalization conditionj j2+

j j2 = 1. Thus, the mean eld Ansatz for the ground state is given by the
condensatestate

joni=goai V= p%[ a'+ bVjvad; (3.15)

wherejvad denotesthe vacuum state.

The variables and characterizing the mean eld ground state (3.15)
are determined by minimizing the energy of the state j yi (3.15), i.e. the
expectation value h yjHqj ni. Depending on the parametersof the system,
the following solutions are obtained:

(a) Uy < Uq : For the casewherethe A A andB B collisionsdominate
the collisional interactions, one obtains = = p% Hence, in the
ground state ead atom is in an equal superposition between the two
internal states, sothat the wave function is given by

j = pﬁ[@% p'Njvad: (3.16)

The corresmnding energyis Eq = N24N (Ug Uy N.

(b) Uy > Uy : For the casewhere the interspeciescollisionsA B
dominate the collisional interactions one hasto distinguish betweentwo
regimes. They are characterizedby land < 1,respectively, where

the parameter
2
= 3.17
N DU W) 549
is determined by the relative strengths of the laser coupling and the

collisional interaction.
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{ () 1:Inthiscase = = p% and we again nd the mean eld
wave function j i (3.16) with energyE, asin the caseof U; < Uy.

{ (i) < 1:In this casethe solution is two-fold degenerate.The two

statesare
Mi:%ﬂd+mNm; (3.18)
joNio= p%[ a+ pINjoi; (3.19)
h i 1= h i =
where = t@+"T 37 = ta PT3y

The correspnding energyis E = N7 [Ug(N 1) ].

The previous discussionshaws that in case(b), U; > Ug, the parameter

= m (3.17) determinesthe structure of the mean eld ground
state. In principle, the scattering lengths and the interaction strengths Uy
and U, are tunable by Festbad resonancesswill be descrited in chapter 5.
Howewer, they are usually kept constart during an experimert. Hence,the
characteristics of the systemcan be adjusted by tuning the laser strength
and thereby changingthe value of .

Throughout the thesis,we will considerthe case(b), i.e. Uy > Uy, for which
we demonstratedthat under certain conditions, two mean eld solutions for
the ground state exist. In chapter 4 we will usea two level systembasedon
thesetwo statesto encale a qubit.

3.2.2 Mean eld ground state in spin representation

In this section, the structure of the mean eld ground states obtained in the
previoussectionis discussedn more detail. For this purpose,a spin represen-
tation of the two internal statesof the atomsis introduced,

JAL D j"i oand jBi ! #i; (3.20)

wherethe spin quartization is relative to the z-axis. In this notation, super-
positions of the two internal statesof an atom may be pictured as

PP id j%io= i+ j#i (3.21)
Pi<ijj&i o= i+ j#i (3.22)
::ﬂi:%ru%wt (3.23)

The rotation angle of the spin, relative to the z-axis, dependson the relative
magnitudes of the absolute values of the coe cients and , that is of the
relative weight of the statesj " i andj #i.
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Using this formalism, we can better understandthe structure of the mean

eld ground states by analyzing the Hamiltonian Hy (3.13) for the di erent
regimesof in a qualitative way. In orderto simplify the discussionwe write
here oncemore the Hamiltonian (3.13),

Ho = Uzo(ayayaa+ bbby + Ua’bba  (a’b+ b'a): (3.24)

Let us analyzethe following cases:

= 0: Rewriting the two degeneratemean eld ground states| i
(3.18,3.19) in the spin represemation, we obtain

= " N=grmoam
jH#i N o= #i

. 4o
JNI:O

J ni=0

Looking at the Hamiltonian (3.24), it canbe easilyunderstood why these
statesare the ground states of the system. For = 0, no lasercoupling
between the two internal states of the atoms occurs. Thus, the last
term of Hy vanishesand only the collisional interactions determine the
structure of the ground state. Sincewe are in the regimeU; > U, the
interaction energyis minimized when all atoms are either in the spin up
state or in the spin down state. Furthermore, sinceUpn = Ugg, these
two states must be degenerate.

1: The groundstatej 9 (3.16) is represeted by
joi=griN=jm T (3.25)

In this casethe Ramancoupling betweenthe internal statesof the atoms
is the dominart term of the Hamiltonian (3.24). The energyof this cou-
pling term is minimized if ead atom is in an equalsuperposition between
j"iandj#i,ie.j 1i =j! i N. This is exactly the con guration real-
izedin the ground state.

o) s
N P

U< U, =

v

Figure 3.1: Spin diagram
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0 < < 1: Here,the two degeneratemean eld ground states| i
(3.18, 3.19) rewritten in the spin represemation are given by

= Q%i M= i el
PNio= j&iN=[ i+ RN

The rotation angleof the spin, moreprecisely and , only dependson
(3.17). Qualitativ ely, this con guration of the spinscanbe understood in
the following way. The parameter characterizesthe ratio betweenthe
strengths of the collisional interactions and the laser coupling between
the internal statesof the atoms. Hence,in the intermediate regime 0 <

< 1; the interaction terms of Hy (3.24) compete with the Raman
coupling. The mean eld ground state cortinuously interpolatesbetween
the two extreme casesfor = 0 and 1. Starting from = 0 and
increasingthe strength of the lasercoupling, the spin of ead singleatom
of the ground state is rotated from the positive j " i (or negative j #i)
z-direction towards the x-axis (j! 1).

3.2.3 Beyond the mean eld appro ximation

The mean eld solutions discussedin the previous sectionsare the lowest-
energystatesful lling the mean eld Ansatzj yi =j ;i N (3.15). Howewer,
they are not the exact ground states of the system. In this section, a better
approximation for the ground state is given by making use of the structure
from the Hamiltonian (3.13). Hg is symmetric in the internal statesand thus
invariant under the symmetry operator Tag , Which exdhangesjAi with jBi.
This meansthat in the caseof no degeneracythe Hamiltonian Hy and the
symmetry operator Tag must sharethe sameset of eigenstates.The eigerval-
ues+1l and 1 correspnd to statesthat are symmetric and antisymmetric,
respectively, under exdhangeof the internal levels. Obviously, the two degen-
erate mean eld ground statesj i (3.18,3.19) do not satisfy this condition.
Hence,a better approximation for the groundstatein the regime < 1, having
a lower energy can be found by using the wave function

<1l: ] 1 n*(] ni TN (3.26)

for the variational Ansatz. Thesesuperpositions of two degeneratemean eld
solutionsj i leadto two orthogonal quasi-degeneratestates, which are now
eigenstatesof Tpag . Therefore, the symmetry of the Hamiltonian is now re-
ected in thegJl ground state. From&ww on, we will not write the normalization

factorn = 21 h{j yi)= 2@ N) explicitly. !

1Keepin mind that becauseofn, 6 n wehavej *i j i6j i (for 6 0).
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The expectation value of the energyin the states(3.26) is found to be

_ N2 N 2Up 23U Up) NBUy Ui,

E 7 1 N (3.27)
Thus, the energydi erence separatingthe two statesis given by
N 1 1 §
= E E+ = N 1 - (3.28)
Thereforej *i haslower energythanj i, and for 1the two states] |

are quasi-degenerate.
The mean eld ground state obtained for strong laser coupling is already
symmetric in jAi and jBi, thuswe de ne

1: j 9 j Qi (3.29)

3.2.4 Schrodinger-cat states

In this sectionthe structure of the two statesj i (3.26) is analyzedin more
detail. Rewriting them as

i N+ N (3.30)
R I (3.31)

—
1
[ S

j
j

onecaneasilyseethat they consistof a superposition of two macroscopicstates
in which all atomsare in either the single-particlestatej ;i = jAi+ |Bi,
or in the single-particlestate j ;i = jAi + |Bi. In literature, states of
this structure are known as Scredinger-catstates? They are characterizedby
their coheren inclusionof macroscopicallydistinguishablestates. Therefore,in
orderto bea\good" (that isamacroscopior at leastmesoscopicsdreodinger-
cat state, the two macroscopicstatesj i have to be asdi erent aspossible.
This requiresthat their overlap

=hujwi=Nhij,iN= N (3.32)

is as small as possible,i.e. 1, or equivalertly that the \size of the cat",
which can be de ned as ? is aslarge as possible.
As seenin equation (3.26), it is preciselyin this regimeof \big" cat states,
N 1, that the two statesj i (3.26) are quasidegenerate.

2This expressionis derived from the famous Gedankenexperiment of Erwin Scredinger
of 1935 [26], in which he illustrated the problem that ariseswhen applying the quantum
superposition principle to states of macroscopicsystems. The two superposedmacroscopic
statesin the Gedankenexperimernt where a dead and an alive cat.
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3.3 Exact numerical calculations

In the previous sectionthe low-energyphysics of the two-mode Hamiltonian
Ho (3.13) was investigated by using a mean eld appraximation and taking
advantage of the symmetry of the Hamiltonian. Now, the obtained analytical
results are comparedwith the exact results of a numerical diagonalization of
Ho. For this reasonthe structure of the exact lowest-energyeigenstatesof the
Hamiltonian is discussedas the systemis driven acrossthe phasetransition
to the Scredinger-cat phase. We shaw, that outside the transition region,
the analytic expressionsobtained in the previous section are very satisfying
appraoximations. Through the analysisof the energyspectrum, an insight into
the structure of the higher excited states can also be gained.

In all the examplesof this section, the number of atomsis xed at N = 200,
and the ratio of the binary interaction strengthsis taken 3—; = 3.

3.3.1 Eigenstates

For the numerical calculation of the eigensystemof the Hamiltonian, the
Hamiltonian is represeted in the Fock basisf jJN nian jnig g, n=0:N,
where ead state is characterized by the number of particles in the internal
statesjAi and jBi. In this basisHg is a real symmetric tridiagonal matrix
of dimensionN+1 N+ 1. Thus, for a xed number of particles, it can be
diagonalizedby numerical methods.

Let us denotethe eigenstatesof the Hamiltonian by

] ‘i:Xd ¢ jN nia jnig; (3.33)
n=0

with reaP coe cien ts ¢, and the correspnding energiesE; (i = 0;1;:;;N and
Eo E: 1 Ey). Forthe discussion,it is conveniert to also expressthe
approximate mean eld statesj *i,j i (3.26)andj 9 (3.29)in the Fock
basis. Then the index i in (3.33) additionally runs over +; and ° Using
this notation the validity of the approximated solutionsis investigatedand the
structure of the lowest eigenstatesof Hy is discussed.The resultsare presened
in gures. 3.2-3.4.

The mean eld calculations done in the previous section predict a phase
transition for = 1 from a phasewhere the two lowest-energystates are
Sdredinger-cat states (< 1), to a phasewith no macroscopicsuperposi-
tions of the ground state ( > 1). Figure 3.2 depicts the B-atom number
distribution for the ground statej °i asa function of . The Scredinger-cat
structure is obsened, as well as the phasetransition with a transition point

3SinceH = H* and Hjj 2 R; 8i;j 2 f0::Ng, we can always choosethe eigervectors to
berea: Hv=v ) Hv = v ) w v+v;Hw= w andw; 2R
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of ¢ 0:97for N = 200. Therefore,apart from the shifted transition point,
the structure of the lowest-energystatesis well predicted by the states (3.26,
3.29) calculated by useof the improved mean eld approximation.

Of certral importance in the derivation of the appraximated states was
the A-B symmetry of the Hamiltonian (3.13), i.e. the invariance of H, under
the exdhangeof the internal statesjAi $ jBi. This symmetry of the exact
eigeristate j °i andj li is depictedin gure 3.3. As for the mean eld solu-
tions, the ground state is symmetricandthe rst excitedstate is antisymmetric
under exchangeof jAi and |Bi.

Figure 3.4 demonstratesthe overlap betweenthe mean eld statesj i,
j 9 and the exact numerical eigenstatesas a function of . It is obsened,
that outsidethe transition region ¢, the statesarein good agreemen so
that the mean eld states(3.26, 3.29) are good appraximations for the exact
eigenstatesof the Hamiltonian (3.13),

A T i fi (3.34)
i i (3.35)

Howewer, the mean eld approximation is not valid in the vicinity of the transi-

tion point. This canbeunderstood by the fact that the state structure obtained

by the mean eld appraximation shouldbevalid in the limit N ! 1 , whereas

the numerical calculationsare computedfor a nite number of particles. As a

consequencethe phasetransition occurs already for some ; < 1 and not at
+ = 1, aspredicted by the mean eld theory (3.26, 3.29).

3.3.2 Energy spectrum

Figure 3.5 preserts the numerically calculatedlow-energypart of the spectrum
asafunction of . For below a critical value, the energiesE, and E; merge
and the two lowest statesin energybecomequasi-degenerateas predicted for
the transition to the Scredinger-catphasein the previoussection.

In order to analyzethe energy spectrum, as well as the structure of the

excited states, in more detail the limiting casesof = 0 and ¢ are
considered.
For = 0, the two lowest statesin energyare degenerate.In addition,

the cat statesare well separatedfrom the rest of the spectrum. This can
beunderstood from the structure of the two states. For = 0, the system
is in an equal superposition of the two stateswith either all atomsin the
state spin up, or all in the state spindown, j i=j"i N j#i N. A
possibility for an excitation of sut a stateisthe ip ofaspin,j"i $ | #i.
The energyone hasto pay for that is o= (N 1)(Uy Up). In fact,
this is exactly the sameenergy found by the numerical calculation of
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Figure 3.2: B-atom number distributions for the ground state (i.e., the coe -
cierts jc%j? from the decompsition of j %i in the Fock basis(3.33)) for N = 200
(a) asafunction of n and , and (b) asa function of n and the valuesof in-
dicated. ;= 0:97 indicatesthe transition point to the Sdredinger-catphase
for < . The quartities plotted are dimensionless.
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Figure 3.3: (a) B-atom number distribution for the ground state (i.e., the
coe cients ¢ from the decompsition of j % in the Fock basis(3.33)) asa
function of n for N = 200and = 0:5. (b) Sameas (a), but for the rst
excited state (i.e., ct). The quartities plotted are dimensionless.
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Figure 3.4: Overlapq= jh umj meanij > Of exactnumerically calculatedstates
with the appraximated mean eld states: overlap op of j % with j *i( < 1)
andj 9 ( 1), respectively, and the overlap g, ofj i withj i( < 1)as
a function of for N = 200. For 1, no mean eld approximation exists
for the rst excited state.
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Figure 3.5: Low-energypart of the energyspectrum of the two-mode Hamil-
tonian Hy (3.13) asa function of . All energiesare measuredwith respectto
the ground state energy

E, Ei.% Thus, the secondand third excited states emergefrom the
ground and rst excited state, respectively, by the ip of onespin,

IR IR R K I (3.36)

The next two excited states (j si) emergefrom a secondspin ip and
are energeticallyraisedin the spectrum by (N 2)(U; Up), etc. These
spin- ip excitations also explain why the merging of the energy levels
for < | occurs within consecutie pairs of levels (see gure 3.5).
Note that the A-B symmetry of the statesj °i andj !i is dueto their
Sdredinger-catstructure. Therefore,the statesarising from the ground
state are all symmetric, and the statesarising from the rst excited state
are all antisymmetric under exdhangeof the internal levels.

In the region where t, the energydi erence betweenconsecutie
levels increasedinearly with . As in the case = 0, the structure of
the spectrum can be explained by assumingthe excitations to be spin
ips. As descriltedin section3.2, this regimeis dominated by the Raman
coupling of the internal atoic states,and the ground state of the system
is foundto bej! i N, wherethe spin of eah atom is pointing towards
the x direction. By ipping one spin of this state, j!i $ j i , the
rst excited state is readed, jij !i N ! This state hasan increased

4For small ( t) the energygapE, E; canbe approximated by Op 1 2,
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energyof " = E; Eg (N 1)Uy Up) = 2 with respectto the
ground state. The next excited states are constructed analogouslyand
it is obsened that the systemas a whole behaveslike a ferromagnet.

3.4 Summary

In this chapter Bose-Einsteincondensationof a trapped gasof bosonicatoms
was descriked, where the two internal states of the atoms are coupled by a
Ramanlaser eld. The low-energyphysicsof the systemwasanalyzednumer-
ically and by a mean eld approximation improved by symmetry argumerts.

Herely, it was focusedon the casewhere the collisional interaction between
atomsin di erent internal statesdominatesthe onebetweenatomsin the same
internal state (U; > Up). It wasdemonstratedfor <  that a phasetran-

sition to a Scredinger-catphaseoccurs,where is a measureat the relative

strength for the coupling and for the collisional interactions. In this regime
the two lowest-energystatesare formed by a superposition of two condensate
states,that is, they are Sdredinger-catstates. They are quasi-degeneratand

well separatedfrom the rest of the spectrum. The appraximated results are

in good agreemen with the exact numerical solutions. Therefore analytical

expressionsare available for the low-energyphysicsof the system.



23

Chapter 4

Scheme for quantum
computation

In this chapter we present a schemefor quantum computation, usingthe ideal
two-speciesBose-Einsteincondensateasanalyzedin the previouschapter. As
we have seen,under certain conditions the systemis con ned to a subspaceof
two states. In the rst sectionof this chapter we discusshow thesetwo states
canbe usedto encale a qubit: the basicelemen of any quarntum computation
scdheme. In sectiontwo we discusshow to manipulate the state of this qubit in
a cortrolled manner We shov how to realize one-qubit gatesas well as a two-
gubit ertangling gate. Together,theseform a universalset of quartum gates.
As an example,we descrike the time ewlution of the systemthat resultsfrom
using the gatesto createa maximally entangled singlet state.

If not mentioned explicitely, we assumehroughout the chapter that we are
in the regimeof the Scrodinger-catphase,that is <  and U; > U,.

4.1 Encoding a gqubit

The basicelemen of quantum computation is a two-level system: a qubit. In
order to be able to encale a qubit, we must idertify a physical systemthat
acts asan e ectiv e two-lewel system.

We sav in the previous chapter that, under certain conditions (U; >
Us; < ), the two lowest-energystates of an interacting two-componert
Bose-Einsteincondensateare quasi-degenerateand well separatedin energy
from the rest of the spectrum. Therefore, aslong as perturbations are much
smallerthan this energygap, the subspacespannedby thesetwo state is pro-
tected against perturbations. Thus, within the regime <  the Hilbert-
spaceof the systemcan be projected onto this two-dimensionalsubspacede-
notedby ©= sparfj ©i;j lig.
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Figure 4.1: Encoding a qubit.

The statesj % andj li areentangled many-body Sdredinger-catstates.
Howewer, we will not investigatethesestatesthemselhes,but, asillustrated in
gure 4.1, usethem to encale the two statesj 0i andj 1i of a qubit.

Following the usual notation of quantum computation, we denotethe two
qubit statesby

joi j % and j1i j ti: (4.2)

Projecting the Hamiltonian Hgy (3.13) onto the subspace ° of the two

qubit states,we derive the e ective Hamiltonian

Ho= PHoP = Eoj °h %+ Eij tih ¥ (4.2)

whereE, and E; are the exacteigervaluesofj % andj ti. P =j %h %+
j lih 1j is the projection operator that projects onto ©, fullling P2 = P.
Operators projected onto the subspace ° are written asO = POP.

Expanding the Hamiltonian (4.2) in the Pauli basisfl;, g;i = X;y;z
(where the Pauli matrices are de ned in the fj %i;j lig basis), Ho is given
by

H, = El';EO 1 E12Eo E

Now, by substituting the exact qubit statesj ° andj %i, by their approxi-
mationsj *i andj i (3.31), respectively, we obtain an analytical expression
for the e ective Hamiltonian,

(4.3)

E.+E

Ho = 1 -
0 2 221

(4.4)
where = N N 111 - is the energysplitting betweenthe two qubit states.
For < ¢, the two states are quasi-degenerateso that we neglectthe term
proportional to ,. Therefore,asit ewlvesunder the action of the resulting
trivial Hamiltonian, the qubit simply acquiresan unobsenable global phase
that we neglect.
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4.2 Quantum operations

In this sectionwe rst shawv how to realizesingle-qubitoperations, rotating the
qubit state about the x- and the z-axis of the Bloch sphere.For this purposewe
induce energyshifts on the atomic levelsby adding a state-dependernt potential
to the Hamiltonian and adiabatically change the Raman coupling between
atomic states. In addition, we shaw that by allowing tunneling betweenpairs
of condensatesystems the statesof the correspnding qubits canbe ertangled.
Together, these operations form a universal set of quantum gates allowing
arbitrary computation.

4.2.1 Single-qubit gate via external potential

The rst one-qubit operation we presen generatesan x-rotation in the Bloch-
sphere.

State dependent potential

In order to cortrol the time ewlution of the qubit, we assumethat the trap-
ping potertial dependson the internal statesjAi and jBi of the atoms. This
additional potential raisesthe energyof oneof the internal stateswith respect
to the other, sothat the degeneracyof the internal statesis lifted. Experimen-
tally this can be realized by applying an external magnetic or electric eld,
sothat the Zeemanne ect or Stark e ect, respectively, causeghe degenerate
hyper ne levelsto split and thus they feel di erent trapping potentials. Fig-
ure 4.2 illustrates this situation with a raisedpotential for atomsin the state
iBi = j#i.

h®

B=0

Figure 4.2: Magnetic eld dependencyof the trapping potential for the two
di erent internal statesof the atoms.

This state dependen perturbation is re ected in the addition of a potertial
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V to the Hamiltonian Hy (3.13) of the unperturbed system,
H=Hy+V, (4.5)

whereV = b raises(or lowers) the potertial for atomsin state jBi. The
perturbation strength dependson the strength of the applied external mag-
netic eld.

Provided the perturbation doesnot couplethe qubit subspace ° to higher
excited levels, the systemstill acts asa two-lewel system,and we may project
the perturbation term V onto  °. Approximating the exact eigenstatesby the

man- eld solutionsj i (3.26), the projection can be expressedanalytically:
V = b= =X |; (4.6)
S 2
1 2
where 4 = N 1 - 4.7)

SinceV is proportional to , the state dependert potential generatesa rota-
tion of the qubit about the x-axis of the Bloch spherewith frequency . This

rotation is described by the time ewlution operator
|

_ cost isint
v = isinxt cost (4.8)
Quantum gate
Choosing an appropriate rotation angle = ,t (by appropriately choosing

the duration t of the perturbation), a set of quantum gates basedon the
rotation about the x-axis can be implemerted,
!

Ccos I'Sins

= = E
Re( )= U(t) isin,  cos, (4.9)
Examplesare | |
01 10
10 and T (4.10)
wherethe rst gate( = ) known asthe NOT-gate, negatesthe state of the
qubit, and the secondone ( = g ) createssuperpositionsof jOi andj 1i.

Note that the timescaleof the gatesis determined by the rotation frequency
« (4.7). Since  is proportional to N, for a macroscopicnumber of particles
the gatescan be madevery fast.

In orderto understandwhy the state dependert perturbation generatesan
x-rotation, let us analyzeasan examplethe e ect of the additional potertial
on the time ewlution of a qubit initially in the statejOi = j"i N +j#i N
(= 0). During the ewlution, the state with the highestenergy i.e. | #i, will
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acquire an additional phaseas comparedwith the state of lowest energy i.e.
] " i. Therefore,the initial statejOi ewlvesas

joi=j i N+j#i N gri Nee e Nt =i Nojai N

(4.11)
wherethe negation of the initial state (jOi ! j1i) for (= correspndsto
the NOT gate. In the basisfj 0i;j 1ig the ewlution (4.11) is equivalert, up
to a global phase,to the x-rotation described by U(t) (4.8).

Validit y of the pro jection

For the projection of the Hamiltonian H = Hy+V (4.5) onto the qubit subspace

0 to be valid, the perturbation V must only weakly couplethe subspace °
to higher excited levels. This is satis ed for perturbations much smaller than
the energygap separating ° from the rest of the spectrum. In section3.3.2
we found that in the regime ¢, the gap scaleslike N 1. Thus, the
transition probability Pjg: j»i for the excitation jOi ! j2i, computed according
to Fermi's goldenrule, hasto ful ll

P_F_er.m_i - M 2 i N
joil j2i (E, Eo)2=4 (1 AUy Ug)2 (N 1)2

1; (4.12)

wherethe matrix elemen 0jVj2i is computednumerically. Therefore,we can
always nd a perturbation strenth  sud that the projection is valid.

Fidelit y

Given the condition (4.12), we expect that the time ewlution of the qubit
underthe perturbation V is well descriked by the time ewlution operator U(t)
(4.8), obtained by a projection onto the mean eld statesj i (3.26). We now
comparethis approximated time ewlution with the exact solutions obtained
by numerical diagonalizationof the two-mode model Hamiltonian H = Hy+ V
(4.5). Figure 4.3 shavs the exact numerically calculatedtime ewlution of the
initial statej °i underthe Hamiltonian (4.5) for a particle number of N = 200.
In order to judge the coincidenceof this ewlution with the ewlution predicted
by the time ewlution operator U(t) (4.8) represeting the quantum gate, we
computethe delit y, de ned asthe overlap betweentwo states?! It takesthe
value 1 for statesthat areequalto ead other and O for orthogonalstates. In our
case,the delit y is given by the overlap betweenthe expected wave-function
] ideal ()i, descriked by the appraximated time ewlution operator U(t) (4.8)
de ning the quartum gate, and the wave-functionj eact(t)i obtained by exact
numerical calculations consideringthe full two-mode model,

F(t) = jh ideal (t)J exact(t)ij 2: (4-13)

1To be exact, it is de ned asthe squareof the absolute value of the overlap.
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Figure 4.3 shows also the delit y as a function of time. It has almost the
maximum value of 1. Thus, as expected, the time ewlution of the qubit, that
is the quantum operations basedon the spin-dependent perturbation V, is
well-descriled by the time ewlution operator U(t) (4.8).
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Figure 4.3: Exact time ewlution of the initial statej °i under the state de-
penden potertial. The occupation probabilities py and p; of the qubit states
j % andj i, respectively, and the delity F(t) for N = 20 = 0:1 and
g, = 100 as a function of time. Times't andt% , Wherethe gates(4.10) are
realizedare emphasizedn the plot.

Conclusion

To concludewe have shavn that a set of quantum gates, basedon rotation
about the x-axis, e.g.a NOT gate, can be implemerted by changing the po-
tential of one of the internal statesjAi or jBi. The quartum operations are
well-descrited by the analytical expression(4.8).

4.2.2 Single-qubit gate via adiabatic phase

Any arbitrary unitary operation on a single qubit can be decommsedinto
successig rotations about two non-parallel axes(seechapter 2). As a second
one-qubit operation, we shov how to perform a rotation about the z-axis, that
is a phase-gate.
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Implemen ting a phase-gate

For the two statesj % andj li to acquire a relative phase,they must be
separatedin energy In the ¢ regime,we know that this is not the case
since the two states are quasi-degeneratej.e. the energy di erence between
them is much smallerthan any timescaleof the system,thus doesnot lead to
an appreciablerelative phase. Howeer, in section 3.3.2, when analyzing the
energyspectrum of the system,we saw that there existsa regimeof , namely
¢, In which thesetwo statesare separatedin energy(see gure 3.5).

To construct a phase-gate,let us rst assumethat the systemis in this

>, regime,and analyzethe time ewlution of the eigenstateg !i. Since
we are consideringfree ewlution, ewen in this regime of , where the two
lowest-energystates are not well separatedfrom the rest of the spectrum, we
are allowed to project the Hamiltonian onto the subspace ° of these two
eigenstates.Therefore, the free Hamiltonian is given by (4.3),

Ho = 0 z; (4.14)
2
where" = E; Eg denotesthe exactenergygap separatingthe two statesat a
givenvalueof . 2 The time ewlution operator resulting from this Hamiltonian
is [

R
it 1 0
Up(t) = ez "0 =0t = 0 o (4.15)
Thus, in the regime > , the rst excitedj i acquiresa relative phase

= "() dt, corresppndingto a rotation about the z-axisby an angle .

To exploit the time ewlution (4.15) for implemerting a quantum gate, the
system has to be transferred from the initial regime = ¢ ¢+ (Where
j 1i arequasi-degenerat&Sdredinger-catstates), to the regime . This
is realized by adiabatically increasingthe parameter . Experimertally this
correspndsto appropriately tuning the laserstrength  which is proportional
to . Under the condition of adiabaticity, we can assume,as we will explain
later, that if the systemstarts in the ground state it remainsin the ground
state during the process. The systemis kept in the >  regimeuntil the
statej i hasacquiredthe desiredrelative phase,and is then transferred back
to the initial regime. Following this scheme,a phase-gates realized,given by

|

_ 1.0 |
Ri()= 5 4 (4.16)
R
where is now the phaseaccunulated during the process, = "(( t)dt.

For instance, a qubit initially in an equal superposition of the basis states,

’Note that " = E; Eg is the exact numerical expression,whereas = E E. denotes
the mean eld energygap in the regime < .
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ewlvesas
joi ,+jli, ' joi +€ ®Wj1i ! joi ,+¢€ j1i .3 (4.17)

Condition for adiabaticit y

For this phase-gateo work, we have to ensurethat the systemremainswithin
the two-lewel subspaceduring the whole ewlution. This can be achieved by
obeying the adiabatic theorem[27]. It statesthat, if the Hamiltonian of a sys-
tem is changedsu cien tly slowly, i.e. adiabatically, a systemstarting in the
ground state remainsin the ground state (now correspnding to the Hamilto-
nian of the new parameters),etc. Hence,the systemcan be transferred from
oneregimeof parametersto anotherone,H ! H ¢ without inducing transition
betweenthe states. Thus, even when \p erturbing” the systemadiabatically,
the projection (4.14) is still valid.
The condition for adiabaticity is given by

pHiEjig B E
E; E h

(4.18)

wherejii;jj iy are eigenstatesof the Hamiltonian at time t. Physically, the left
hand side is a measureof the change of the eigervectors of the Hamiltonian
with time. It hasto be much smaller than the frequency of the transition
jiit 1 jji, descriked by the right hand side.

In implemerting the phase-gatefollowing the stheme preserned above,
equation (4.18) becomesa condition on — Sincethe equation depends on
the energygap E; E;, it is reasonableto distinguish betweenthree regions
of in the energyspectrum (see gure (3.5)).* Firstly, the < | regime,
with a large energygap betweenthe qubit subspace ° and the higher excited
levels, which only slowly varies with . Secondly the regime ! ¢ with
a small, quickly varying energygap. Partly evaluated numerically, condition
(4.18) can be estimated within thesetwo regionsby

< oL 20 )W WwN T
Lo o TN (U U

where the function f (N) slightly decreaseswith N, f(4) = 0:6; f(10) =
0:5; f (1000) 0:01. We note that the rst inequality becomedessrestrictive
for increasingnumber of particles, whereasn the secondcase, — only smaothly
decreasesith N. In the third regime, > , numerical calculation shavs

(4.19)

3Do not confuse(4.17) with the example (4.11) given for the x-rotation: an x-rotation in
the fj 0i;j 1ig basiscorrespondsto an z-rotation in the fj "i N;j#i Ng basis.

“Note that sincein our case[Ho(t); Tag ] = 0, with Tog the symmetry operator that
exchangesjAi and jBi, only stateswith the samesymmetry asthe initial eigenstatecan be
accessed.Thus no transition jOi $ j1i can occur.
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that the transition amplitude for excitation is negligiblecomparedto the other
cases.Thus, for large N, the timescaleof the gate is primarily limited by the
adiabatic ewlution near .

Fidelit y

If the conditions (4.19) for _ are obeyed, we expect the time ewlution of
the qubit to be well descriked by the time ewlution operator Uy(t) (4.15),
i.e. no transitions to higher levels occur. We now presein, as an example
for the implemertation of the adiabatic phase-gatethe time ewlution of the
qubit state jOi + j 1i for the acquiredrelative phase = . Calculations
are done by an exact diagonalization of the full two-mode model Hamiltonian
Ho() (3.13). To comparethe resultswith the ewlution predicted by the time
ewlution operator (4.15) describing the phase-gate,also the delity (4.13)
is calculated. The ewlution under the adiabatic phase-gateis presened in
gure 4.4: For ¢ the quasi-degeneracyf the two lowest-energystatesis
lifted and the rst excited state acquiresa relative phase. Furthermore, the
occupation probability of the qubit statesaswell asthe delit y are plotted as
a function of time. Even for a factor v e usedto obey the conditions (4.19),
the delit y doesnot decreasesigni cantly.

Summary

We concludethat by adiabatically transferring the systembadk and forth from

o <  to aregimewherethe two qubit statesare separatedin energy an
adiabatic phase-gatecan be implemerted. The adiabatic conditions are given
by (4.19), and the transformation of the state of the qubit can be calculated
from (4.16).

4.2.3 Two-qubit gate via tunneling

We have presenied two setsof one-qubit operationsthat together allow the ar-

bitrary manipulation of the state of a singlequbit. A universalset of quartum

gatesadditionally requiresa non-trivial two-qubit gate to allow erntanglement

creation. In this section,we presen a quantum gate that can generatemaxi-

mally erntangled states of two qubits. The interaction is mediated via second
order tunneling processedetweentwo adjacert traps.

Tw 0-qubit problem

Considertwo systemsasdescriked in chapter 3, characterizedby the samepa-
rametersU;, Uy, and by the samenumber of particles, N. The experimenal
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Figure 4.4: Adiabatic phase-gatefor phase = ,with = 0:1andN = 200
for the initial qubit state j % + j li. _is chosento obey the conditions
(4.19) by a factor of v e and is taken constart within the two regimes <
0:85, 0:85. Computation is done by numerical diagonalization of the
Hamiltonian. ( and the correspnding energysplitting ", (b) the relative
phase (t) = "(( t))dt and (c) the exact occupation probabilities p, and

p, of the statesj % andj 1!i ,respectively, aswell asthe delit y F(t) (4.13)
of the exact ewlution dueto (4.15), asa function of time.
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realization of such an equal lling of two traps will be discussedn chapter 5.
Ead systemrepreseis a qubit.

Controlled interactions between two qubits can be achieved by enabling
tunneling betweenthe systems.This can be realizede.g. by lowering the trap-
ping potertial of an optical lattice [16] or by bringing two microtraps con ning
the atoms closeto ead other [28]. The two-mode Hamiltonian describingthis
hasthe form

HT = H01+ H02+ T (420)

Here, Hq; is the Hamiltonian (3.13) describing the dynamics of ead single
trap, i = 1;2,and T is the tunneling term

T= J(ajay+ aja, + bl + blby); (4.21)

which accourts for the tunneling of atomsfrom onetrap to the other, conserv-
ing their internal state. The subscripts1; 2 identify the trap.

Becauseof the tunneling betweenthe two systemsthe number of particles
in ead trap is no longer consered, thus the qubits are in generalnot well
de ned. Howewer, the ratio of tunneling to collisional interactions J=U,, can
be chosenso small that the dynamics of the systemare dominated by second
order tunneling processeswhich do not changethe number of particles of the
subsystems.

We shav now that for J su cien tly small, thesesecondorder processesre-
ate ertanglemert betweenthe qubits in the di erent traps, i.e. that a universal
two-qubit gate can be implemerted.

Energy spectrum

In orderto analyzethe tunneling processandto nd an appropriate projection
of the two-mode Hamiltonian H+, let us rst discussthe energyspectrum of
the unperturbed system(J = 0) of two traps, with total number of particles
K = 2N, asshown in gure 4.5.

Sinceno tunneling is allowed, the spectrum is composedof the unperturbed
spectra of the two traps for the di erent possiblenumber distributions N, +
N, = K. As we have seenin section 3.3.2,the lowest-energysubspace ° of
a single systemis, for ¢, well separatedfrom the rest of the spectrum.
Therefore, the low-energy part of the spectrum of two traps is composed of
these one-trap subspaces R,i = fi %;j lign,, where N; is the number of
particlesin trap i = 1;2. For = 01t is easyto verify that the subspaceof
equal lling, = 9 %, is lowest in energy The rst excited subspace

! is characterizedby unequaltrap lling N + 1and N 1. It is separated
from by the interaction energyUy. Sincethe problem is symmetric in the
traps 1and 2, ! consistsof8states, *=1fj %;j ltign 1+ fi %;j ltign 1.
The secondexcited subspacen turn is raisedby 3U, with respectto 1. It is
de ned by the one-qubit statesof N 2 atoms, etc.
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Figure 4.5: Low-energypart of the spectrum of the two-trap system(a) asa
function of  with respect to the ground state, (b) schematically for = 0.
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First order tunneling processesead to transitions from the two-qubit sub-
space to excited states, ! 1. Clearly, such a changein the number
of particles per trap is not desirable. Howewer, choosingthe ratio J=U, su -
ciertly small, transitions to excited levels becomenegligible and the dynamics
of the systemtakesplacewithin the qubit subspace, drivenby secondorder
processewia 1.

Pro jection

We can introduce an e ective Hamiltonian to accoun for the dynamicsin a
truncated Hilbert space,by projecting the systemonto the subspaces and
1 (see gure 4.5)° Secondorder processesvia ! are then automatically
included. In order to derive a simple analytical expressionfor the e ective
Hamiltonian, we againappraximate the statesj !i by the correspnding mean
eld solutionsj i (3.26), and use (N)= (N 1) N N 1 and
= 0.
The e ective Hamiltonian resulting from the full two-mode Hamiltonian
(4.20) can be written in the form:

0 1
W VvV 0
Hr=PHP=BV 0 V X; (4.22)
0O VW
whereP is the operator projecting onto 1. The 3 3 block structure of

H resultsfrom the di erent couplingsof the three subspaces .,y 1 n~N
(the qubit subspace)and § 1n+1 (see gure 4.5). Eadh of thesesubspaces
is spannedby the four statesj * *i;j T i;] i and ] i, which
depend on the number distribution of the correspnding subspace Hence,H ¢
isal2 12 matrix.

The matrices on the diagonal determine the energy of the unperturbed
subspacesSetting the energyof the statesin  to zero(recall that we neglect
the energysplitting within the subspaces)W is given by

w = 11, (4.23)
where = E : E isthe energydierence separating ; from ( = U
for = 0). SinceT doesnot couplethe stateswithin the subspacesW is a

4 4 diagonal matrix.

5The dimension of the Hilbert sp,aceof the double system grows very quickly with in-
creasingnumber of particles, dim= [ _ O(m + 1)(2N m+ 1). Thus, not only for a nice
description of the processesput alsoto allow the simulation of the time ewlution for ar-
bitrary number of particles, an appropriate projection of the Hamiltonian Ht (4.20) hasto
be found.
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The matrix V represets the tunneling of one particle, i.e. the coupling
between and 1!,

0 14+ o o 1 ‘!
_ Jq% 0 1+ 1 0 E
v= S NN+DE o 14 0o & (4.24)
1 0 0 1+

1 1
T doesnot couple §,;n 1@nd § 1n+1-

In order to judge the validity of this projection, gure 4.6 shows both the
time ewlution dueto the full two-mode Hamiltonian H+ (4.20), and that under
the e ective Hamiltonian H+ (4.22) for N = 6 atoms ead qubit. Even for
this small number of particles, the results are in good agreemeh Therefore,
the projection leadsto a satisfying description of the system.

10

08 |

06 — Py

04

02

00 L

Figure 4.6: Time ewlution of the two-qubit systemfor N = 6; = 0:1 and
J=U, = 0:032starting from the groundstatej ° 9. Occupation probabilities
Poo and py; of the statesj © % andj ' li, respectively, as a function of
time. Superscript indicates exact diagonalisationof the full two-mode model
Hamilttonian Ht (4.20), without superscript indicatesthe time ewlution due
to the e ective Hamiltonian Hy (4.22).

Time evolution

We use the e ective Hamiltonian Ht (4.22) for further investigation of the
time ewlution of the two-qubit system. Figure 4.7 shaws the time ewolution
accordingto Uy = e M7t for N = 200, starting from the ground state of the
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Figure 4.7: Time ewlution of the systemfor N = 200 = 0:1andA = 0:1
(J=W = 88 10 %) of the initial statej © %. p;, i;j = 0,1 denotesthe
occupation probability of the statej ' 1i of the qubit subspace. (a) Time
ewlution under Ur = e M7t (b) probability Poy(t) (4.25) and (c) dynamics
due to the slowv secondorder processeslescribed by U(t) (4.27) as a function
of time.

total systemj © C. The ewlution of the qubit statesis governed by two
di erent timescales:

The fast oscillation superimposedon the slov dynamicsare dueto rst

order tunneling processes.Sincewe are in a regime of weak tunneling,
theseprocessesanbe understood asfar o -resonant Rabi-like oscillation
betweenthe two subspaces, $ !. The total occupation probability
Pout Of the excited subspace ! isshowvnin gure 4.7. It canbe extracted

from Ut to be |

Pout A sin? 'Et; (4.25)
wherethe amplitude A and the oscillation frequency! are given by
2 + q
A=14 JIN(N + 1) and ! = 2+ 8J2N(N + 1): (4.26)

2+ 8J2N(N + 1)
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The dominant cortribution to the time ewlution of the qubit statesis
dueto slow secondordertransitions via the excitedsubspace *. Straight
forward algebrashaws that for = 0, the time ewlution operator de-
scribing this dynamicsis given by

cosst 0 0 i sin 5t !
0 cosst isinst O §
= 2 2 .
v % 0 isinyt cosyt 0 ' (4.27)
i sint 0 0 cos5t
with the frequency = ‘. Numerical calculation shaws that for 0

¢, the time ewlution is well descrited by an operator of the same
structure as(4.27) with a frequency

= 1 2 : (428)

The resulting time ewlution of the two qubits is plotted in gure 4.7. It
is in good agreemeh with the slov dynamicsdepictedin gure 4.7.

Quantum gate

The two-qubit operations induced by tunneling can now be identi ed using
the appraximated time ewlution operator,
0 1

COS5 0 0 i sin
0 COS5; isins 0
= = 2 2 .
()=u) % 0 isiny cos; O g (4.29)
i sin 0 0 CoSs;
where isdened as = t . For particular timest , maximally enangled

states can be produced.
Tollustrate this, we investigatethe time ewlution of the ground state jOG,
which leadsto the maximally entangled state jOO + ij11i. The correspnding

is givenby = 5, sothat the gateis
®100i"
_1Bo 1 o%_
U(tz)‘%%o 1 0% (4.30)
i 001

Figure (4.8) shows this gate at work. In order to judge the delit y of the
nal state, we considerthe time ewlution under both U; = e "H1t and U(t)
(4.27). The latter doesnot accourt for rst order processesOne can obsene
that the delit y is reducedby theseprocessesand may thus be approximated
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Figure 4.8: Time ewlution of the initial statej ° % dueto Ur = e M7t for
N = 200, = 0:1andJ=U, = 86 10 *. The occupation probabilities p; ,
i;j = 0;1 of the statej ' 1i of the qubit subspace andthe delity F asa
function of time.

by F(t) 1  Pou(t) (see(4.26)). In order to suppressthis undesirable
e ect, the probability amplitude A (4.26) can be adjustedto a small value by
appropriately tuning J,

U2 A

J2: .
AN(N+ 1)1 2A°

(4.31)

Additionally, the parameterscan be chosensud that P (t) is minimal at the
nal time t of the gate, i.e. sinz(!it ) = 0. Newertheless,in order to make
A small, J cannot be increasedtoo much. otherwisehigher excited statesare
populated. The parametersusedin gure 4.8 obey theseconditions.

A high delit y implies a small occupation probability of levels outside
i.e. weak tunneling. This leadsto a slovndown of the dynamics of the two
gubits. The rotation frequency expressedn terms of A is given by

— 1 . 2y.
=5 P 1@ O (4.32)

As can be seen,there is no direct dependenceon the number of particles, so
that the dominart timescaleof the ewlution of the two qubits only depends
on A and on the energydi erence between and !. Diculties arising
from this will be discussedn chapter 5.
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4.2.4 Read-out process

Finally, the result of a computation must be read out. This can be done by
measuringin the rotated basisof the condensatestates(3.18,3.19):

fjgisinig (4.33)

Transferringthe systemfor the read-out processto = 0, this basissimpli es
to

fi"i N j#i Ng; (4.34)

whereall atoms are either in the internal state jAi or jBi.

4.3 Quantum gates at work

In the previoussectionswe presetted a schemefor quantum computation with

atwo-speciesBose-Einsteincondensate. We demonstratedthat the two lowest-
energystatesof this systemcanencale a qubit, and shaved how to implemert

auniversalsetof quantum gates. In conclusion,we shaov how to construct some
of the standard quantum gates,namelythe Hadamardgate and the cortrolled-

NOT gate. In addition, we investigatethe quantum gatesrequiredto create
the singlet Bell state.

4.3.1 Common quantum gates
Single-qubit gates

In the previoussectionwe shoved how to perform single-qubit rotations about

the x- and the z-axis:
! !
Cos;  Isiny 10

Re( )= isiny  cos; and R.( )= 4 4 (4.35)
From theseoperations, the Hadamard gate can be constructed as
!
_ 1 1 _ :
H= 7 ] R 35 R 5 Re 5 ; (4.36)

up to a global phase.

Tw 0-qubit gate
The most commonuniversaltwo-qubit gate is the cortrolled-NOT gate,

1 000"
01008,
000 1%
0010

CNOT = % (4.37)
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One can prove that the two-qubit gate (4.30)

100"

_1Bo1i 0f

‘9_2%0i 10K (4.38)
i 00 1

is equivalert to CNOT, up to local unitaries [29]. One possibleconstruction
of the CNOT gate out of the quarntum operations we possess given by

CNOT = R,( =)Ry(

JR( 5) L R

5 SR

LG LY

DR 5) Rl 3):

2
(4.39)

4.3.2 Creation of the singlet Bell state

In order to put the quantum gatesto work, we presen a simple quartum
circuit in terms of the quantum gatesavailable in our stheme. Starting from
jO0, we shav how to createthe singlet Bell state j0li  j10i. The sequenceof
guartum gatesis given by

jO0l  j10 = R4( E) 1 1 Ry( )joaq: (4.40)
The implemertation of the circuit is shavn in gure 4.9.

For the salke of completenessve shav the sequence$or creating the triplet
Bell states:

j00 +j1li = R,( ) 1 joa
j0li +j10i = R,(5) 1 1 Ry() OO (4.41)
00 jlli= R 5 1 joa
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Figure 4.9: Time ewlution under the quartum circuit (4.40) creating the
singlet Bell state. p;, i;j = 0;1 denotesthe occupation probability of the
statej ' Ji of the qubit subspace. F isthe delity of the time ewlution.
Note the di erent timescalesof the quartum gates.
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Chapter 5

Realizabilit y and decoherence

In the preceding chapter, a scheme for quartum computation with a two-
speciesBose-Einsteincondensatewas presened, where the qubit is encaled
by the two lowest-energystatesof the system. Furthermore, it wasshaovn how
to realizea universalset of quantum gates.

In this chapter, we discussthe feasibility of the presertied sdheme. Firstly,
the experimental requiremerts for that qubits can be realizedand initialized
are discussed. Secondly the e ect of decoherenceon the preserted stheme
is investigated. For this purpose,the timescaleof the quarntum operationsis
analyzedand comparedwith the decoherencéime of the system.

In order to give somenumbers, we considerthe casesof N = 4, N = 10
and N = 1 atoms, respectively. We choosethe two hyper ne statesjF =
1;meg = 1i andj2;2i of the electronicground state of 8’Rb to represen the
two internal statesof the atoms: Rb is the atomic speciesfor which BEC was
realizedfor the rst time [3(], it haswell known scattering properties and the
two states can be condensedsimultaneously [31].

5.1 Realization of the qubits

In this sectionwe discusghe requiremerts for satisfyingthe conditionsimposed
on the physical systemin chapter 3, wherethe two-speciesBose-Einsteincon-
densatewas preserted. We shov how to chooseand prepare the systemin
order to realizeand initialize the quarntum bits.

5.1.1 Basic experimental requiremen ts

We considerBose-Einsteincondensationof a trapped gasof N atomsthat are
con ned by a three dimensionalquasi-harmonicand isotropic potential. Sud
a potential can be experimentally realized by a magnetic or optical trap in
lo e-Pritc hard geometry[32],[33. The trapping frequencyis denoted! . For
calculating explicit examplesof di erent numbers of particles, we considerthe
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N 4 10 10°

! 5 kHz 2kHz 100Hz
Uo 142.6Hz 36.1Hz 0.40Hz
7.13Hz 5.42Hz 667Hz
Thax | 200K 16nK 19 K

Table5.1: Examplesfor N = 4, N = 10and N = 1(° for the hyper ne states
j1; 1i andj2;2i of Rb for the trapping frequency! : scattering strength
U (6.2), for = 0:1 and the temperature T required for cooling to
the ground state at = 3. The usedparametersare ag = a; = 5:45 nm,

-1 — 4.
M = 1:44 10 *kgand & = %:

appropriate sizeof the trap by ! y=4 = 5kHz, ! =10 = 2 kHz and ! =105 = 100
Hz.

Internal state structure of the atoms

The atomic specieshasto be chosensud that the atoms possesswo internal
degreesof freedom,denotedby jAi and jBi. It is essetial that jAi and Bi
can be coupledto eat other by a coheren transition.

JAi and jBi could be two hyper ne levels of the atoms connectedby a
Ramantransition [34]. Sudt a two-photon transition hasto obey the selection
rulej mgj 2, wheremge is the z-compnert of the total spin, represeted
by the quartum number F. For the 8Rb isotope, as can be seenfrom the
level sthemeof the D, line of gure 5.1, this could be the two hyper ne states
jF=1,mg =1 andj2;2i. The hyper ne statesjl; 1i andj2;2i of 8Rbwe
usefor our numeric examples,do not satisfy the selectionrules. Howeer, they
can, in principle, be coupledby a multi photon transition, also indicated in
gure 5.1.

Requiremen ts on the scattering prop erties

The interaction betweenthe atoms occursvia elastic collisions, characterized
by the s-wave scattering length a*°. In the discussionof chapter 3, the scat-
tering length for collisionsof atomsin the sameinternal state, A{A, B{B, are
assumedto be equal,ap; = a3, = agi. This condition is e.g. almost ful lled
for the two hyper ne statesjl; 1i andj2;2i of 8Rb with a§° = 5:45 0:26
nm [35]. The scattering length for interspeciescollisionsA{B is denoteda,.
The collisional interaction strengths U, and U; are directly related to the
scattering lengths. The rst one characterizesA{A aswell asB{B processes,
whereasU,; descritesA{B collisions. For calculating the interaction strengths,
we assumethe spatial mode function (%) (3.7) to be a normalized gaussian
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Figure 5.1: Level schemeof the D, line of the rubidium isotope 8’Rb with the
nuclear spin quantum number | = 3=2. mg denotesthe z-compnert of the
total spin, represeted by the quartum number F =1 1=2. (a) Ramantran-
sition couplingthe hyper ne statesjF = 1;mg = 1i andj2; 2i. (b) Multiphoton
transition coupling the hyper ne statesjl; 1i andj2;2i.

function,

q %2
o¥) = x° 7 e (5.1)

with the characteristic length xq = (ﬁ)lz2 of the harmonic trap. Therefore,
the collisionalinteraction strength U; (3.11),i = 1; 2, becomes

S s
H 4 aisc — 2M sc| 3=2.
I — —a>! o 2
M X A (5.2)

For the exampleof 8’Rb, the interaction strength for elastic collisionsbetween
particles in the hyper ne statesjl; 1i or j2;2i yields UY™ = 1426 Hz,
UN=10 = 361 Hz and U}'=1°° = 0:40 Hz.

5.1.2 Requiremen ts for encoding a qubit

The analysisof the condensatein section 3.2 shaved that for the conditions
U; > Uy and ¢, the two lowest-energystates of the systemare quasi-
degenerateSdredinger-catstatesthat are well separatedfrom the rest of the
spectrum. Therefore, these are the two states usedto encale a qubit. We
discussnow how to satisfy the necessaryconditions.
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Feshbach resonance

To satisfy the condition U; > Up or 8—(1) > 1, equation (5.2) is usedto shaw the
dependenceon the scattering length,

U _ a > 1
Uo~ a 1 (5.3)

For most atomic species,the desiredvalue of :—; > 1is not satis ed by the
intrinsic parametersof the atoms. A medanismto in uence and cortrol the
scattering properties of an atomic ensenble is the Festbad resonancd36|.

A Fesltbad resonanceoccurs an elastic binary collision when the energy
of a bound state in a closedchannel is closeto the energy of the incoming
atoms (openchannel) (see gure 5.2). If there existssomecouplingmedanism
betweenopenand closedchannel,the atomscantemporarily occupy the bound
state, thereby changing the elastic scattering properties of the system. In
general, the energiesof the involved states depend on external parameters,
like a magnetic or an optical eld. Hence, by varying this parameter, the
system can be tuned into resonanceand therefore the scattering length can
be varied over a wide range of negative and positive values,asit wasrealized
using magnetic[37],[38 and optical [39 elds.

Therefore,in principle, we are ableto tune the scatteringlength a,, charac-
terizing collisionsbetweenatomsin di erent internal levels, sud that a;=a, >
1.1 Newertheless,in the vicinity of a Festbach resonancenelastic processes
drastically increaseand limit the rangeof 5t. We will discussthe related prob-
lems in section5.4. It is not known yet |f there exists an easily accessible
Festbadh resonanceor the channel (j1; 1i + j2;2i) of 8Rb, the examplewe
usefor calculations.

Weak laser coupling

In order to encale a qubit, we also needthe condition t» Where pa-
rameter isdenedas = m (3.17). It is determinedby the rela-
tive strengths of the laser coupling and the collisional interaction.  (where

t 1) denotesthe transition point to the Sdredinger-catphase.In the range
of ¢, the two lowest statesin energyof the systemcan encale a qubit.
As we saw, the interaction strengths U; and Uy are in principle tunable, but
usually kept constart during an experimert. The valueof canbechosenand
varied easily by adjusting the laserstrength  of the Raman process. Values
for the examplesof LL = 0:1 are givenin table 5.2. Note that in this regime,

t, the two Sdredinger-cat states are well descrited by the mean eld

1Since a Festbach resonanceis a one-thannel processwill not change more than one
scattering length at the sametime. Therefore we choosethe scattering processef atoms
in dierent internal statesto be altered.
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Figure 5.2: Feshbach resonance:(a) Scematic plot of the potertial energy
curvesfor two di erent channelsillustrating the formation of a Festbad reso-
nancein an elasticcollisionalprocess.Ey, isthe energyof the ertrance channel,
and Epoung Is the energy of the bound state in the closedchannel giving rise
to the Festbad resonance.(b) Sdematic plot of the dependencyof the scat-
tering length a*¢ on an external parameter (here a magnetic eld B), nearthe
Feshbadc resonanceat B ..
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solutionsj i (3.26). A physical system satisfying these conditions can be
usedto encale a qubit.

5.1.3 Multi-qubit  systems

Obviously, for quantum computation processing,it is not enoughto possess
one qubit. Therefore, sewral identical copiesof the qubit-system have to
be prepared. In doing so a dicult task is to obtain the samenumber of
particles in ead trap. One possibility to achieve commensurate lling is to
prepareall the atomsin onetrap rst, andthen deformthe trapping potential
adiabatically into a multi-w ell potertial [40] (see gure 5.3). Sincethe energyof
the whole systemis minimized for equal lling and the processs adiabatic, we
canassumehat the condensatesn ead well have the samenumber of particles
N. For smallN, onecanalsothink of loading a Bose-Einsteincondensatanto
an optical lattice with commensuratelling [16],[4]].

30l ool dongl

Figure 5.3: Preparation of se\eral identical qubits. Adiabatic deformation of
an initial single-vell trap with 2 N atoms into a double-well trap with N
atomsin eadt well.

5.1.4 Initializing the qubits by cooling

The singlequbits are encaled by the two lowest-energystatesof a two-species
Bose-Einsteincondensate. Therefore, the system has to be cooled down to
condensation.In order to initialize the qubit in the state jOi, the systemhas
to be preparedin the ground state j °i for t, Which is an even more
restrictive requiremen. In this regime,the two lowest-energystatesare quasi-
degenerate. Thus, direct cooling of the systemto the absolute ground state
would be a dicult task. The ideais thereforeto rst cool the systemto a
temperature T closeto zerofor > , sud that the thermal energyis lower
than the energygap betweenthe ground and the rst excited state. Note that
this is only possiblein this regimeof , sinceonly there the rst-excited state
energyis high enoughsothat practically all of the atoms can be cooled down
to the ground state. Then, we decrease adiabatically to the desiredvalue.
According to the adiabatic theorem (seesection 4.2.2), the system remains
in the ground state, which now becomeshe Sdredinger-cat state, the qubit
state j Oi.
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We give the temperature neededto cool the systemto the ground state of
the regime >  and presern a method how to cool a two-componert system
down to condensation.

Required temp erature

In order to cool all atoms down to the ground state of the regime >
the thermal energyhasto be smallerthan the energyseparation” to the rst
excited level,

ke T < "() ; (5.4)
with the Bolzmannconstart kg = 1:38 10 3. As discussedn section3.3.2,
for 1( > 3) the systembehaveslike a ferromagnet. The energy gap

in this regimecan be appraximated by () =2 = (N 1)(U; Uy, thus
condition (5.4) becomes

T< (N 21U U kt: (5.5)
The preparation of the ground state is favoured for a high number of particles
and strong collisionalinteractions. For (= 3), condition becomedor N = 10°
T < 1 K whereador a small number of particles(N = 4; 10) the cooling is an
experimentally more challengingtask, sinceT < 20 nK, 16 nK, respectively.
Note that Uy dependson N, thusT(N = 4) > T(N = 10) is dueto the chosen
values! -4 = 5kHz and! =10 = 2 kHz.

Sympathetic cooling

Bose-Einsteincondensationwas rst reported in a cloud of atomsin a single
spin state of rubidium [30] and later in single spin states of sadium [42] and
lithium [43. To read the necessaryltralow temperatures below the transi-
tion temperature of Bose-Einsteincondensationtheseexperimerts usedlaser
cooling and trapping, followed by magnetictrapping and evaporative cooling.

The creation of two di erent condensatesof neutral atoms in the same
trap was rst demonstratedby Myatt et al: [31], with the hyper ne states
j1; 1i and j2;2i of 8Rb. They usedthe technique of sympathetic cooling,
known from cooling of trapped ions [44], but at higher temperatures. They
cooled the cloud of atoms in the j1; 1i state by lossy evaporative cooling.
The atomsin state j2; 2i wereonly cooled by thermal cortact with the j1; 1i
atoms. For this method to be e ective requiresthe elastic collision rate for
momertum transfer betweenthe two componerts to be large, and the inelastic
collision rate K, that corverts either componert to an untrapped speciesto
be small. They measuredK , betweenthe two componerts to be surprisingly
small, K, = 22 0.9 10 * cm®=s. This stability of the double condensate
was explained [35],[45 with the almost equal scattering lengths of the two
hyper ne states,axy, = a35.



50 CHAPTER 5. REALIZABILITY AND DECOHERENCE

N 4 10 10°

t, (ms)| 18 1.5 1.2 10°*
ta (ms)| 12 33 12

to, (ms)| 29 114 1018

Table 5.2: Timescalesty, t,q, to Of the x-gate, phase gateand two-qubit gate
respectively, for the exampleof ¥Rb with = 0:1; &= %, (= 5; »= g
and = 1:23. tyq resultsfrom numericalintegration of the adiabatic conditions

(4.18).

N 5 10 10°

213Hz 102Hz 126 Hz
max | (1.3Hz 54.2Hz 6.7 kHz

J 5.64Hz 0.61Hz 7 10 ' Hz

Table 5.3: Experimertal parametersfor realizing the quantum gates: refers
to the strength of the state dependent potential, .« to the maximal laser
strength in the adiabatic processand J to the tunneling strength. Parameters
for calculation seetable 5.1.

5.2 Realization and timescales of the quantum
gates

In this sectionthe quantum gates presened in chapter 4.2 are investigated
in more detail. It is assumedthat we have a physical system satisfying all
conditions as discussedabove, sothat the quantum bits are initialized in the
state j00::0i, ready for quantum computation processing.

In order to successfullyapply the quantum-gate operations, the dynamics
of the system,i.e. the dynamicsdueto the gates,have to work on a much faster
timescalethan the decoherencef the physical system. This is expressedoy
the condition

te ; (5.6)

where tg is the typical timescaleof a quarntum gate and the decoherence
time of the physical system(e.g. for a gate generatinga rotation of frequency

by an angle , the requiredtime is givenby t = —). Therefore, we discuss
how to realizethe quantum gatesand analyzetheir timescales. Decoherence
will be treated in the next sections. The examplesof very small numbers of
particles,N = 4; N = 10, and a big condensateN = 1, are calculatedwith
the parameters = 0.1 and 3—; = g—; = ‘5‘. The results are summarizedin table
5.2.
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5.2.1 x-gate

The rst single qubit operation we presened (seesection4.2.1) is a rotation
about the x-axis of the Bloch sphere,Rs( ) (4.9). For this purposea potertial
dependingon the internal state jAi, jBi of the atomswasaddedto the Hamil-
tonian. Experimenrtally, this canbe realizedby applying an external magnetic
or electric eld, sothat due to the Zeemannor Stark e ect, respectively, the
degeneratehyper ne levels split up (see gure 4.2).

To ensurethat the perturbation doesnot couplethe qubit statesto higher
excited levels, the probability PFe™ (4.12) for occupying the higher excited
stateshasto be much smallerthan one. This leadsto the condition (4.12) for
the perturbation strength ,

11 AN DR (5.7)

where the factor 10 ensurespP Fermi 1. Possiblevaluesfor ( = 10)
are summarizedin table 5.2.

The timescaleof the x-gate resultsfrom the rotation frequency  (4.7) by
eliminating  with equation (5.7):

1
txzi .y

p—: 5.8
x 21 2U; U (N 1) N (>8)

ty decreasewery quickly with N. But even for a particle number of N = 4 it
is the fastestof the three gates(seetable 5.2).

5.2.2 Phase-gate

The secondone-qubit operation we presened (see4.2.2)is an adiabatic phase-
gate, performing an z-rotation, R,( ) (4.16). The gate requiresthe adiabatic
transfer of the systemfrom 0 0 ¢ to ¢ , forth and bad.

For this purposethe laserstrength hasto be tunable from zeroto =
m 1 (seetable 5.2). Note that in the range t, the laser
intensity hasto be cortrolled with a very high precision.

Obviously, the timescaleof the phase-gatas not determinedby the rotation
angle of the gate, but by the adiabaticity of the process.Hence,we expect
a slov gate. The required time t,q for applying the phase-gateis obtained
by numerical integration of the adiabatic condition for — (4.19). tyq slightly
decreasewvith N andisindirectly proportional to U; Ug. Forinstance,N = 4
leadsto t,q = 12ms,N = 10to t,q = 33msand for N = 1, the timescaleis
reducedto t,g 12 ms. Thus, for small numbers of particles the phase-gate

is the slowvest of the three gates(seetable 5.2).
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5.2.3 Two-qubit gate

In section4.2.3,we presened a universaltwo-qubit gate, realizedby allowing
tunneling betweentwo adjacert traps. This can be implemerted e.g. by low-
ering the potential of an optical lattice [16], or by bringing the traps con ning
the atoms closeto ead other, e.g.asit can be realizedwith microtraps [2§).

The interaction between the particles in the two traps is mediated via
secondorder tunneling processesln order to keepthe probability amplitude
A for rst order processessmall, we consider weak tunneling. A and the
tunneling parameterJ are correlatedas (4.31)

J? 1 A

U2~ AN(N+1)1 2A° (5-9)
where we used that for ¢, the energy di erence between the qubit
subspace and the next excited levels, , can be approximated by Uo.

Number examplesfor A = 0:1 are given in table 5.2.

Using (5.9), the frequencyof the two-qubit gate can be expressedn terms
of A, = ;(1 ?)Up (4.32),where = pzi 1. Therefore,the timescale
of the two-qubit gate is given by

4

th = —MmM
? 1 29U,

(5.10)
Note that by the replacemen of J accordingto (5.9), t, dependsonly via the
interaction strength Uy on the number of particles. Therefore, decreasingthe
number of particles slightly shortenst,. Another possibility to speedup the
gateis to increaseA, the amplitude of the probability Py (4.25) for that the
excited subspace 2 getsoccupied. A maximal value of A = 0:4 correspnds
to = 1:232 The resulting conditions for the exampleof low and high number
of particles are listed in table 5.2.

Comparing the timescalesof the three quarntum gates(table 5.2) one nds
that the slovest dynamicsis due to the adiabatic phase-gate.Also the possi-
bilities of creating a fast two-qubit gate are limited.

5.3 Eects of decoherence

Quantum systemscan newer be perfectly isolated from the ervironment. The
resulting uncortrolled interaction with the ervironment leadsto a lossof co-
herence,a processknown as decoherence.Some sourcesof decoherenceare

2Note that the exact value of A hasto be chosensud that Py is minimal for t (see
section 4.2.3). Nevertheless, by choosing such a high A the probability for transitions to
higher subspacesdecomessigni cant. Obviously theseis a trade-o betweenexcitation and
speedup of the gate.
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thermal uctuations, trap lossesdueto inelastic collisions,scattering processes
with badkground thermal atoms or spontaneouslight scattering.

In this section,the e ect of number uctuations onto the presened scheme
of quantum computation is investigated. A reduction of the number of particles
leadsto the problemthat the calculated parametersfor applying the quantum
gatesdo not match to the real number of particles in the experimernt. The
resulting problemsonto the time ewlution under the three quantum gatesare
discussedand it is showv that already the lossof one particle may reducethe
delit y of the time ewlution in a unacceptableway.

5.3.1 Qubit
The e ect of particle uctuations onto the parameter (3.17), de ning the
structure of the qubit states,isfoundto be % = - Forsmall uctuations,
this can be linearizedto N

= : 5.11

The lossof a small fraction of particles leadsto a small relative changeof .
Thus, and thereforethe structure of the qubit states, is quite stable under
particle uctuation. That meansthat the exact knowledgeof the number of
particles is not necessaryfor de ning the qubit.

In the following, we investigatethe e ect of number uctuations onto the
time ewlution of the qubit statesunderthe di erent quarntum gate operations.
Note that the laser strength is an experimertal parameter that does not
dependon N.

5.3.2 Xx-gate

The dynamicsinduced by the x-gate is almost stable under small variations
of the number of particles: the rotation frequency  (4.7) and the rotation
angle = t changeas

. . N 1 N 1 (-12)

where the last term, resulting from the variation of , can be neglectedfor
. Starting from j 0i, the delity of the gate is reducedfrom 1 to

Fe(t ) = co§(7). Thus, even for a loss of 10% of the initial number of

particles, the delity for = isstill F4(t ) = 0:97 (see gure 5.4).

5.3.3 Phase-gate

The ewlution of the qubit under the phase-gatas extremely sensitive to num-
ber uctuations. The reasonfor this lies in the dependenceof the energy
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Figure 5.4: Time ewlution of the initial qubit state jOi under the x-rotation
Ry ( ) for a uctuation of TN = 0:1. The parametersare N = 200, = 01
and =Uy = 100The occupation probabilities p, and p; of the two qubit states
jOi and j1i, respectively as well as the delity F(t) (4.13) are plotted as a

function of time. Superscript indicates the uctuation, no superscript refers
to the ideal case.
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Figure 5.5: Phase-gatdfor a uctuation of TN = 0:1 for N = 100. Superscript
indicates the uctuation, no superscript refersto the ideal case. (a) Energy
splitting " = E; Eg (b) accunulated relative phaseand (c) delity as a

function of time.
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spectrum on the number of particles (see gure 5.5). Numerical calculation
shaws that the loss of even a small fraction of particles leadsto an intolera-
ble decreaseof the delity. Figure 5.5 shows that for a number of particles
N = 100, already the lossof one particle canlead to a decreaseof the delit 'y
to F < 0:5. Therefore, for small number of particles, N < 100, not even a
single particle may be lost.

Theseresultsimply that the initial number of atomsmust be known exactly.
Slightly modifying the phase-gatethis experimertal problem can be evaded.
By further increasing in the adiabatic process, ¢, avalueof (

3) can be found sud that for eadhr number uctuation —N 1, the phase
error is a multiple of 2 , and hencenot obsenable. Sincethe condition for

adiabaticity for > restricts —only very weakly, this processdoesnot a ect

the timescaleof the phase-gatesigni cantly. Howeer, this method only solves
the problem of the uncertainty of the initial number of particles. During the

adiabatic phase-accunalating process( () > 0), no uctuations are allowed
- independent on the number of particles.

5.3.4 Two-qubit gate

The rotation frequency = 'T of the two-qubit gate is found to be stable
N

under small uctuations of N, — « - Howewr, the world is not that
simple: when calculating in section4.2.3,we assumedhat the two systems
betweenwhich tunneling occurs have exactly the samenumber of particles at
all times, N;(t) = N,(t). Discussingthe e ect of uctuations, this condition
implies that the lossof particles hasto occur in both traps at the sametime.
Obviously, for a statistical processthis is not realistic.
Therefore,we investigatethe problem arising from an unequaltrap lling.

Solet usassumehat the two traps containing the qubit systemsare not equally
lled, N; 6 N,. Figure 5.6 shavs the energy spectrum for this situation.

Comparedto equal lling, the qubit subspace® de ned by two di erent qubits

N+1,N,-1

N-1,N,+1

N-1,N+1 N+1,N-1

N, N

Figure 5.6: Shematic energyspectrum for the two-trap systemfor = 0.
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Figure 5.7: Time ewlution of the initial qubit state j00 under the two-qubit
gate for equal lling with N = 200 atoms ead qubit and for unequal lling,
N; = 200,N;, = 199,denotedby superscript. The occupation probabilities pgg
and p;; of the two-qubit statesjO0 and j11i are plotted asa function of time.
The parametersare = 0:1andJ=Uy, = 88 10 “:

is not only raisedin energy Also the energydi erences of the two subspaceso
which € is coupledby rst ordertunneling processeslepend on the di erence

N = jN1 Nyj, aswell ason the direction of tunneling, sothat the symmetric
situation characterizing the two-qubit gate is broken.

Thus, independent on the total number of particles, already a particle
dierence of N = 1 betweenthe two traps leadsto dynamics completely
di erent from the one predicted by the two-qubit gate assumingequal lling
(see gure 5.7). This e ect can only be avoided if there are no lossesbefore
and during the application of the two-qubit gate.

We concludethat decoherencelueto uctuations of the number of particles
strongly restricts the number of gatesone can apply without decreasingthe
delit y unacceptably The phase-gateand the two-qubit gate are found to
be very sensitive to uctuations, they work only within no losses.Thus, the
required lifetime ts is the time during which no particle is lost. Whereas
a small uncertainty in the initial number of particles only causesmall errors.

5.4 Inelastic collisions

A fundamertal sourceof decoherencef a Bose-Einsteincondensates due to
trap lossesby density-dependen inelastic two-body collisions (mostly spin-
exchange) and three-body processes.Unlike other loss medanismssud as
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collisionswith the badkground gasor spontaneouslight scattering, thesetrap
lossesare intrinsic lossmedanismsthat cannot be eliminated by simply engi-
neeringa better trapping environment. For small lossesthe rate equation for
N can be linearizedto

—':' =  K,miN K3zm?N; (5.13)
A

where mi = N | o(%)j*d* (5.14)
Z

M2 = N2 j o(%)j°d (5.15)

and n(x) = N o(%) o(*): (5.16)

K, and K 3 arethe inelastic rate coe cien ts for two- and three-body processes,
respectively. The inelasticrate coe cien ts K 9 and K § for 8’Rb (the superscript
indicatesthe absenceof a Festbad resonancepre summarizedfor the di erent
scattering channelsin table 5.4. Note that K 9 of 8’Rb is very small compared
to other species[35.

As discussedn the previoussection,in orderto ful Il the condition a;=a, >
1 (5.3), a Feslbad resonancas usedto alter the scatteringlength a; that char-
acterizeselastic collisionsbetweenatomsin di erent internal states. Howeer,
aswasshawvn e.g.by Roberts et al. [46], inelastic processesre highly enhanced
in the vicinity of a Festbad resonance.Therefore, the dominart trap lossof
the preserted systemwill be due to inelastic interspeciescollisions. Thus, we
focus on the correspnding scattering channel jAi + |Bi.

In the previousanalysisof the e ect of number uctuations onthe quartum
gates,we derived the very se\ere condition that during quartum computation
processing,the number of particles in the traps may not change, N = 0.
Therefore, we de ne the decoherencdime  of the system as the time in
which one particle is lost

t( N = 1) (5.17)

For successfullyapplying a quantum gate, this decoherencdime hasto be
much larger than the typical timescaletg of the gate,

te: (5.18)

For analyzing this condition in detail, we discussthe loss medanismsdue to
inelastic two- and three-body processeseparatelyand comparethe resulting
decoherenceimes (5.17) with the tg for the di erent quantum gates,summa-
rized in table 5.2. Analyzing the rate equation (5.13), is found to scaleat
leastwith ﬁ In addition, the deca rates are enhancedin the vicinity of the
Festbach resonance. Therefore, condition (5.18) is expectedto be ful llable
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Entrance Channel| Kf'(cm*s) K3P(cm*s) | KP'(cm®s) K3®(cmbs)
i1 i+ 1 2 31 10182 23 10%8c¢ 9 10 d
12,21 +)2;2i 2 10 tba 23 10%8c¢ 22 10 %#e
i1, 1i+j22i 2 10%a 22 10 1P

Table 5.4: Theoretical and experimertal resultsfor the inelastic collision rates
K9 (two-body processespnd K2 (three-body processespf 8Rb. 2[47] P[31]

°[48] “[49 °[50]

only for a low particle number and a weak Festbach resonancea;=a 1.
The decoherencdimes for N = 4; 10and N = 10° are summarizedin table
5.4.1. For the discussion,recall table 5.2 summarizing the timescalesof the
guartum gates.

5.4.1 Two-body processes
Only consideringinelastic two-body collisions,the rate equation (5.13) writes

N z
— KoNZ j o(%)j%d: (5.19)

As far aswe know, there are no proposalsabout the scalingof the inelastic
collisionalrate K, in the vicinity of a Festbad resonance.Therefore,we rstly
ewvaluate (5.21) without consideringthe e ect of the Festbach resonance.Sec-
ondly, we assumefrom experimertal data for 8°Rb [46] a maximal dependence
of K,/ aZ. (like for three-body lossesseebelow).

In order to obtain the order of magnitude of N for which quantum gates
can be applied, we evaluate condition (5.18) for the two-qubit gate (5.10),

4

th = —+—:
? 1 2

(5.20)

Togetherwith (5.19) this leadsto

> 4 ha 1
N M 4 K, (5.21)
Note that sinceU, (5.2) and the two-body rate-equation (5.19) have the same
dependencyon the mode function (%), the condition doesnot dependon the
density of particles or on the trapping frequency
Evenonly consideringthe non-resonabrate K9 = 2.2 10 14@ of 8Rb,
the condition (5.21) demandsfor , = 5 and a;=g = 4=3 a very small number
of particles,N  30. Evaluating the rate equation(5.19), onecan seethat the
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N 4 10 10
9 (ms)| 174 110 10 10°
, (ms)| 55 35 3 10°
3 (Mms)| 50 50 4 107
(ms)| 26 21 4 107
Table 5.5: Decoherencgimes = t( N = 1) (5.17)for N = 4;10 and 10°

due to inelastic two- ( ,) and three-body ( 3) processesnd consideringboth
lossmedanisms( ). The superscript O denotesthat no Festbad resonancas
considered.

decoherencéime 2 islongerthan the timescalesof the singlegates. Assuming
now the e ect of the Festbadh resonanceo be descrilked by the scalingK , /

al., the decoherencdime is reducedby a factor of (a;=a)*. Togetherwith
ty, tag that are proportional to alzio 1 (seesection5.2), the condition te
is optimized for a;=a, = 4=3. Usingthis value,the decoherencéime for N = 4
computesto , = 55 ms, which is still longerthan the timescalesof all three
gates. For a particle number of N = 10, the decoherencéime = 35msis of

the order of the timescaleof the adiabatic phase-gate.

5.4.2 Three-b ody pro cesses

Only consideringparticle lossesdue to inelastic three-body processes(5.13)

writes " 7
— = KaN3 j o(%)j%d>: (5.22)

In the vicinity of a Festbad resonancethe three-body reconbination rate K 3
scalesasthe scattering length to the fourth power, K 3 = K 3(a;=a))* [48)], [46].
Therefore, the decoherenceime is given by

1 1

P —
— 6 3 3 =
3 XO( ) Kg(alz%)4N3

(5.23)
wherexo = (3-)* is the characteristic length of the harmonic trap. For all

three di erent quartum operationstg is proportional to U—lo I x3 (seesection
5.2). Thus, unlike for the caseof two-body processesliscussedbove, the trap-

ping frequency! / X,? in uences the relation between ; and the timescales
of the gates;small frequenciesare favorable.

For the non-resonan rate of ¥Rb K2 = 2.2 10 28% (table 5.4) and the
ratio a;=a = 4=3; the decoherencdimes for N = 4 and N = 10 are both
computedto be 3 = 50ms. For N = 10 atoms, this is only little more than
the timescaleof the adiabatic phase-gate.
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Accourting for both inelastic two- and three-body processesthe decoher-
encetime computesfrom the rate equation (5.13) to be = 622 ms for
N = 4 particles,and = 205 msfor N = 10 particles per qubit. Therefore,
we concludethat for particle numbers of about N = 4, a small amourt of x-
rotations as well astwo-qubit gatescan be applied. Choosingthe parameters
carefully, it is even possibleto apply the adiabatic phase-gateonce, so that
together with the other operations, a Bell state can be produced. For N = 10
particles per qubit, it is still possibleto create maximally entangled two-qubit
states.

5.5 Summary

The ideal atomic speciesfor realization of the shemewe preserted, possesses
two internal statesthat can be trapped and condensedsimultaneously Fur-
thermore they can be coherenly coupledto eat other and have the same
scattering lengths. The scattering betweenatomsin di erent internal statesis
either strongerthan betweenequalatomsor there existsa Festbac resonance
for this channel. The inelastic rates are extremely small.

The most profound problem of using the system for quantum computa-
tion or at leastfor creating an arbitrary two-qubit state, is that the quantum
gatesare very sensitive to number uctuations, no particle may be lost. Com-
paring the resulting decoherencdime by only consideringthe dominart loss-
medanismsdue to inelastic two- and three-body collisionswith the timescales
of the quantum gates, it results that only a very small number of quantum
gatescan be applied. Therefore,without suppressinghe lossof particles, the
systemcannot be usedfor quartum computation. In fact, only very recerly
it was proposedhow to reducethe three-body reconbination rate by using a
sequenceof laser pulses[51]. Howewer, we obtain that for small numbers of
particles and a weak Festbadh resonancemaximally entangled statesbetween
two qubits can be produced.
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Chapter 6

Conclusion and Outlo ok

The goal of this thesisis to explorean approad for quantum computation, in
which qubits are encaled in atomic many-body statesnot sensitive to defects
in the number of particles.

For this purpose,we focusedon a two-componert interacting Bose-Einstein
condensate.We reviewed and analyzedthe results of [18], whereit was shovn
that under certain conditions, the ground state of the condensateis quasi-
degenerateand well separatedfrom the excited levels. The atomic ensenble
then behaves as a two-lewel system, where the properties of the two states
are not very sensitive to a changein the number of particles. Using these
two many-body states for encaling the qubit, we further demonstrated how
to realize a universal set of quantum operations. We shaved that one-qubit
operations can be performed by exploiting the Zeemane ects or Stark ef-
fectsinduced by a magneticor electric eld, respectively, and by adiabatically
changing the Raman coupling between atomic states. A universal two-qubit
gate can be performed by allowing tunneling betweentwo neighboring qubit
systems.

Finally, we discussedhe feasibility of the preserted scheme. We analyzed
the experimertal requiremerns, both for the preparation and the initialization
of the qubit systemsas well asthe realization of the quantum gates. In addi-
tion, we investigatedthe limitations of the schemeresulting from decoherence.
Our attention herely was focusedon the most important sourceof decoher-
ence,the lossof particles due to inelastic two- and three-body processesAs
expected,the properties of the many-body qubit statesare found to be robust
under changesin the number of particles. Thus, in order for the qubits are well
de ned, it is not necessaryo know the exact number of particles. In addition,
the lossof a small fraction of particles doesnot lead to a lossof information.

Howewer, we found that this situation changeswhen applying the quan-
tum gates. In particular, coheren ewlution of the statesof the qubits is only
possibleif (i) the number of particles does not change during the adiabatic
processof the phase-gate,and (i) two qubits interacting via tunneling have
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to be characterizedby the samenumber of particles. Thus, a successfubppli-
cation of thesegatesrequiresthat not even a single particle is lost. Therefore,
the challengingproblemto be solved consistsin nding an optimal systemfor
realization, above all an atomic specieswith extremely small inelastic collision
rates and the required scattering properties. In that caseit turns out that for
small numbersof particles per qubit a limited amourt of gatescan be applied.

Thus, the preserted schemecannot be usedfor complexquantum compu-
tational processesinlessa way to suppressthe loss of particles is found. In
fact, only very recerily it was proposedto suppressthe inelastic three-body
reconbination rate using a sequenceof laser pulses[51]. Howewer, even if the
suppressiorof lossesshould turn out to be unrealistic in practice, by applying
only a small number of gates,interesting multi-particle statescan be created.
Using the exampleof 8’Rb, we shaved that it is possibleto preparetwo qubits
of four atoms ead in any Bell state. Two qubits of ten atoms ead can be
maximally ertangled.

In fact, it should be possibleto create even more complex states. Even
though decoherencemposesseererestrictions onto the number of gatesthat
can be applied subsequetly, the number of quantum operations acting simul-
taneously are in principle not limited. Therefore, by applying the two-qubit
gate onto pairs of qubits in parallel, and then entangling thesepairs in a sec-
ond step, a large number of qubits can be entangled in only two operational
steps. Togetherwith the fast rotation of singlequbits about the x-axis, a vari-
ety of entangled multi-qubit statescould be created. Expanding the preserted
stheme,one could imaginethe creation of entangled multi-qubit statesin only
one operational step by arranging the traps in an appropriate way and allow-
ing tunneling betweenmore than two qubits. For the exampleof a three-qubit
system,the arrangemem could be a linear or trigonal one. Already for a num-
ber of four qubits, a multitude of con gurations opensup.

In this thesis, we explored a speci ¢ approad for quartum computation
basedon qubits encaded in condensatestates. However, one can partly gener-
alizethe problemsarising from decoherencéo any approad basedon a similar
somehav simple way of encaling qubits in condensatestatesand using second
order tunneling processedor entanglemeri creation. It remainsto be seenif
there can be found a clever way to encale qubits in condensatestates sud
that not only the statesof the qubits themsehesare robust under defects,but
alsothe computational processes.
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