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Zusammenfassung iii

Zusammenfassung
Um eine physikalische Theorie präzise zu testen, muss sie in einem System untersucht wer-
den, das einfach genug ist, um eine präzise theoretische Beschreibung zu erlauben, und des-
sen Eigenschaften mit hoher Genauigkeit gemessen werden können. Seit vielen Jahrzehnten
dient das Wasserstoffatom als ein solches System zum Testen der Quantenelektrodynamik
(QED) gebundener Systeme. Wegen seiner Einfachheit lassen sich die Energieniveaus des
Wasserstoffs mit Hilfe der QED präzise berechnen. Experimentell wurden Übergangsfre-
quenzen in Wasserstoff mittels Laserspektroskopie genau vermessen. Durch den Vergleich
der experimentellen Daten mit dem theoretischen Ausdruck können zwei physikalische Kon-
stanten, die Rydberg-Konstante und der Ladungsradius des Atomkerns, bestimmt und die
Gültigkeit der Theorie selbst getestet werden.

In dieser Arbeit wird über Fortschritte auf dem Weg zur Spektroskopie des 1S-2S-
Zwei-Photonen-Übergangs in dem wasserstoffartigen Ion He+ berichtet. Da He+ die selbe
Struktur wie Wasserstoff hat, wird es im wesentlichen durch die selbe Theorie beschrieben.
Allerdings tragen QED-Terme höherer Ordnung einen größeren Anteil zu den Energieni-
veaus bei, da sie mit großen Potenzen der Kernladung skalieren. Durch Kombination der
1S-2S-Übergangsfrequenz mit dem genau bekannten Ladungsradius des Heliumkerns könn-
te die Rydberg-Konstante zum ersten Mal in einem anderen System als Wasserstoff genau
gemessen werden. Der Vergleich dieses Wertes mit dem aus der Wasserstoffspektroskopie
gewonnenen Wert wird dann einen strengen Test der Universalität der QED liefern.

Die Genauigkeit der Wasserstoffspektroskopie wird derzeit durch Effekte aufgrund der
Atombewegung limitiert. Wegen ihrer Ladung können He+-Ionen nahezu bewegungslos in
einer Paul-Falle gefangen werden, was diese Effekte stark reduziert. Der erste Teil dieser
Arbeit befasst sich mit dem Ionenfallenaufbau. Etwa 50 He+-Ionen sind zusammen mit eini-
gen tausend lasergekühlten Be+-Ionen gefangen, die zur sympathetischen Kühlung dienen.
Die Anregung des 1S-2S-Übergangs in einem He+-Ion kann zur Drei-Photonen-Ionisierung
zu He2+ führen. Es wird eine Technik demonstriert, mit der diese Ionen in Echtzeit und
mit Einzelteilchenauflösung nachgewiesen werden können. Dies wird als empfindliches und
hintergrundfreies Detektionsverfahren für die Spektroskopie dienen.

Während Wasserstoffspektroskopie mit ausgereiften Lasersystemen im tiefen Ultravio-
lett durchgeführt werden kann, ist zur Anregung des 1S-2S-Übergangs in He+ schmal-
bandige Strahlung mit einer Wellenlänge von 60,8 nm erforderlich. Dies liegt im extremen
Ultraviolett (XUV), wo keine Dauerstrichlaser verfügbar sind. Stattdessen werden die hoch-
intensiven Pulse eines infraroten Frequenzkamms mittels der Erzeugung hoher Harmoni-
scher in einem Überhöhungsresonator kohärent in das XUV umgewandelt. Die diskreten
Moden des resultierenden XUV-Frequenzkamms können dann den Übergang effizient an-
regen und ermöglichen eine hohe spektrale Auflösung. Der Frequenzkamm, aus dem die
hohen Harmonischen erzeugt werden, benötigt eine außergewöhnliche spektrale Reinheit,
damit schmale Moden im XUV erreicht werden können. Im zweiten Teil dieser Arbeit wird
der Aufbau eines stabilisierten Frequenzkamm-Systems beschrieben, das diese Anforderung
erfüllt. Im Rahmen dieser Arbeit wird eine neue Technik zur Messung des Phasenrauschens
von resonatorstabilisierten Lasersystemen demonstriert.
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Abstract
For a precision test of a physical theory, it has to be studied in a system that is simple
enough to allow a precise theoretical description and whose properties can be measured
with high accuracy. For many decades, the hydrogen atom has served as such a system
for testing bound-state quantum electrodynamics (QED). Due to its simplicity, the en-
ergy levels of hydrogen can be precisely calculated using QED. On the experimental side,
transition frequencies in hydrogen have been accurately measured using laser spectroscopy.
By comparing the experimental data to the theory expression, two physical constants, the
Rydberg constant and the nuclear charge radius, can be determined, and the validity of
the theory itself is tested.

This thesis reports on progress towards spectroscopy on the 1S-2S two-photon transition
in the hydrogen-like ion He+. Since He+ has the same structure as hydrogen, it is described
by essentially the same theory. However, higher-order QED terms contribute a larger
fraction of the energy levels since they scale with large powers of the nuclear charge.
By combining the 1S-2S transition frequency with the accurately known helium nuclear
charge radius, the Rydberg constant could for the first time be accurately measured in a
system other than hydrogen. Comparing this value to the one obtained from hydrogen
spectroscopy will then provide a stringent test of the universality of QED.

The accuracy of hydrogen spectroscopy is currently limited by effects due to atomic
motion. Due to their charge, He+ ions can be held near-motionless in a Paul trap which
greatly reduces these effects. The first part of this thesis describes the ion trap system.
Around 50 He+ ions are trapped together with a few thousand laser cooled Be+ ions that
provide sympathetic cooling. Exciting the 1S-2S transition in a He+ ion can result in three-
photon ionization to He2+. A technique is demonstrated that allows detecting these ions in
real time with single-particle resolution. This will serve as a sensitive and background-free
detection scheme for the spectroscopy.

While hydrogen spectroscopy can be performed with mature deep ultraviolet laser sys-
tems, driving the 1S-2S transition in He+ requires narrow-band radiation at a wavelength of
60.8 nm. This lies in the extreme ultraviolet (XUV) where no continuous-wave laser sources
are available. Instead, intracavity high harmonic generation is used to coherently convert
the high intensity pulses of an infrared frequency comb to the XUV. The discrete spectral
modes of the resulting XUV frequency comb can then efficiently excite the transition and
enable high spectral resolution. The frequency comb that drives the high harmonic gener-
ation requires exceptional spectral purity such that narrow mode linewidths in the XUV
can be achieved. The second part of this thesis reports on a stabilized frequency comb
system that was set up and fulfills this requirement. As part of this work, a new technique
for characterizing the phase noise of cavity-stabilized laser systems is demonstrated.
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Chapter 1

Introduction

The basic principle of the scientific method is to make theories that describe the behavior of
nature and to challenge these theories by comparison with experimental observations. One
particularly fruitful example has been the analysis of the spectrum of atomic hydrogen. Due
to its enormous impact, it has been described as the “Rosetta stone of modern physics” [1].

In the late 19th century, it became clear that the wavelengths of the spectral lines
emitted by excited atoms follow regular patterns. The simplest pattern is that of the
hydrogen lines whose wavelengths are given by the Rydberg formula:

1
λnm

= R∞

( 1
m2 − 1

n2

)
, (1.1)

where R∞ ≈ 1.097 × 107 m−1 is the Rydberg constant, and m and n are positive integers.
Initially, the Rydberg constant was just an empirical parameter that had to be determined
from experiments. This changed in 1913 when N. Bohr introduced his famous model of the
hydrogen atom [2]. By introducing several ad hoc hypotheses, such as the quantization of
the electron orbits, he obtained an expression that relates the Rydberg constant to other
physical constants:

R∞ = mee
4

8ε2
0h

3c
, (1.2)

where me and e are the mass and charge of the electron, respectively, ε0 is the vacuum
electric permittivity,1 h is the Planck constant, and c is the speed of light. The Bohr model
was clearly incompatible with classical physics, and an entirely new kind of theory was re-
quired to consistently describe the behavior of atoms. This was achieved by E. Schrödinger
who in 1926 wrote down what is now known as the time-independent Schrödinger equation
for the hydrogen atom [3]:

∇2ψ(r) + 2me

ℏ2

(
E + e2

4πε0|r|

)
ψ(r) = 0, (1.3)

1Like most physicists in the early 20th century, Bohr used cgs units where 4πε0 = 1. All formulas in
this thesis are given in SI units.



2 1. Introduction

where ψ(r) is the time-independent part of the wave function,2 ℏ = h/(2π) is the reduced
Planck constant, and E is the energy of the system. Schrödinger was able to show that
Equation 1.3 has solutions for any E > 0. However, for E < 0 the equation can only be
fulfilled at certain discrete energy levels which are given by

En = −hcR∞

n2 , (1.4)

where n = 1, 2, 3, . . . is the principal quantum number. These energy levels turn out to
be identical to the energies of the quantized electron orbits that Bohr had to introduce
in his model. The postulate that the transition between states with energies En and
Em is accompanied by the emission or absorption of a photon with wavelength 1/λnm =
|En − Em| /(hc) then leads to the Rydberg formula.

Already in 1887, A. Michelson and E. Morley used their famous interferometer to
demonstrate that the red (n = 2, m = 3) hydrogen line actually consists of a pair of lines [4].
Since this fine structure splitting is a relativistic effect, Schrödinger’s non-relativistic theory
cannot explain it. A. Sommerfeld extended the Bohr model by using relativistic electron
orbits and was able to calculate the fine structure in agreement with the observations [5].
However, his model suffered from the same conceptual problems as the Bohr model. By the
late 1920s, P. Dirac and others had managed to formulate a relativistic version of quantum
mechanics. According to the Dirac equation, the energy levels of a hydrogen-like atom
are [6]

ED = mec
2
[
1 + (Zα)2

(n− δ)2

]−1/2

, (1.5)

where Z is the nuclear charge number, α = e2/(4πε0ℏc) is the fine-structure constant, and

δ = j + 1
2 −

[(
j + 1

2

)2
− (Zα)2

]1/2

, (1.6)

where j is the total angular momentum quantum number. Possible values of j are |l ± s|,
where l = 0, 1, . . . , n − 1 is the orbital angular momentum quantum number, and s = 1/2
is the electron spin quantum number. In the relativistic theory, the electron in a hydrogen
atom generates a magnetic moment which is due to a combination of its spin and its
orbital angular momentum. The interaction between this magnetic moment and the nuclear
magnetic moment gives rise to the hyperfine structure.

In Dirac’s theory, states with the same n and j have the same energy. However, in
1947, W. Lamb and R. Retherford showed that the 2S1/2 and 2P1/2 states3 are split by
around 1 GHz [7]. This difference was later called the Lamb shift. One effect that is
not taken into account in the Dirac equation is a level shift due to the finite size of the
nucleus. Only the wave functions of S states have significant overlap with the nucleus, while

2The interpretation of what the wave function represents has been hotly debated ever since.
3We label the states with the usual notation nlj where the angular momentum quantum number is

given as a letter (S, P, D,. . . for l = 0, 1, 2, . . . ).
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wave functions with larger angular momentum quantum numbers vanish at the origin.
However, the resulting energy shift is too small to explain the observed effect [8]. The
mystery could be solved after the theory of quantum electrodynamics (QED) was developed
by S. Tomonaga, J. Schwinger, and R. Feynman. In this theory, light and matter are
described by quantum fields which leads to a variety of new effects that influence the
energy levels of bound electrons [6]. Since then, QED has withstood experimental tests
with ever increasing sensitivity and today is one of the most accurately tested theories in
all of physics. Figure 1.1 shows a detailed level scheme of the first two principal quantum
numbers in atomic hydrogen.

Schrödinger

n = 2

n = 1

Dirac QED HFS

1S1/2
F = 0
F = 1

2S1/2

2P1/2 F = 0, 1
F = 0, 1

2P3/2 F = 1, 2

Figure 1.1: Level scheme of atomic hydrogen (adapted from [9]). The insets are magnified
by a factor of 100 000. At this scale the excited state hyperfine structure (HFS) is not re-
solved. The quest to calculate the levels with increasing accuracy has been a major driving
force in the development of modern physics. The narrow 1S-2S two-photon transition can
be driven with ultraviolet light at 243 nm and has been measured most accurately [10, 11].

1.1 Testing QED with laser spectroscopy
The QED expression for the energy levels of a hydrogen-like atom is usually grouped into
three parts:

Enlj = ED + EM + EL, (1.7)
where ED are the Dirac energy levels given by Equation 1.5, EM are recoil corrections
due to the finite nuclear mass, and EL is the Lamb shift which includes a variety of QED
effects, as well as corrections due to the finite nuclear size. The full expressions for the
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latter two terms are quite lengthy and can be found in the literature [6, 12]. The energy
levels depend on a number of physical constants at different levels of precision. To quantify
this statement, ED is expanded into powers of Zα. Equation 1.7 can then be recast into
the form4 [13]

Enlj = hcR∞

[
−Z2

n2 + fnlj(Z, α,
me

mN

, . . . ) + δl0
CNS

n3 r
2
N

]
. (1.8)

We can identify the first term inside the brackets as the non-relativistic approximation
of the energy levels which was obtained by Bohr and Schrödinger. It is on the order of
1 for low-lying states in light hydrogen-like atoms, while the other two terms are much
smaller than 1. The second term fnlj(Z, α, me

mN
, . . . ) contains relativistic corrections, recoil

corrections, QED effects, and higher-order nuclear charge distribution contributions. It
depends on the fine structure constant α, the mass ratio between the electron and the
nucleusme/mN , and on several other physical constants. It can be calculated with sufficient
accuracy for analyzing spectroscopy results using values for these constants that have been
measured in other experiments [6]. The last term is the leading-order finite nuclear size
correction which depends on the mean square nuclear charge radius r2

N and only affects S
states. The coefficient CNS depends on α, me/mN , and on the Compton wavelength of the
electron which are known much more precisely than r2

N from independent measurements [6].
From these considerations we can see that spectroscopy on hydrogen-like atoms is most

sensitive to the Rydberg constant R∞ and to the nuclear charge radius rN . A value pair
{R∞, rN} can be extracted by combining the measured frequencies of two different transi-
tions. If more than two measurements are available, the constants can be determined using
different combinations. The agreement between the results then serves as a consistency
check of the expression for the energy levels (Equation 1.8). In atomic hydrogen the fre-
quency of the 1S-2S two-photon transition is known with by far the highest accuracy [10,
11]. This is due to the narrow linewidth of only 1.3 Hz [14] and due to the possibility of
driving the transition with two counter-propagating laser beams which cancels the Doppler
effect to first order. The results of other measurements are therefore usually combined with
the 1S-2S result to extract R∞ and the proton charge radius rp.

Figure 1.2 shows the current status of this comparison. The “H-world” data point
is the combination of 15 different measurements that were performed before 2010 and are
compiled in the CODATA5-2014 report [15]. In 2010, the CREMA6 collaboration published
a value of the proton charge radius that was obtained my measuring the frequency of the
2S-2P transition (Lamb shift) in muonic hydrogen [21]. Muonic hydrogen is an exotic
version of the hydrogen atom where the electron is replaced by a muon. Since the muon
is around 200 times heavier than the electron, the atomic orbitals are smaller by the same
factor. This dramatically enhances the overlap of the S state wave function with the

4The rest mass term mec2 is dropped since it is the same for all energy levels and therefore has no
influence on the transition frequencies.

5Committee on Data for Science and Technology.
6Charge Radius Experiments with Muonic Atoms.
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Figure 1.2: Values of the proton charge radius rp and the Rydberg constant R∞ obtained by
hydrogen spectroscopy (blue dots) and by muonic hydrogen spectroscopy (orange square).
The “H-world” point is obtained by combining 15 different measurements that were per-
formed before 2010 (Adj. 8 in Table XXIX in [15]). Since then, new measurements were
performed at the Max Planck Institute of Quantum Optics, Garching, Germany (MPQ) [13,
16], the Laboratoire Kastler Brossel, Paris, France (LKB) [17], York University, Toronto,
Canada (York) [18], and Colorado State University, Fort Collins, United States (CSU) [19].
The muonic hydrogen data point is a reanalysis [20] of the original measurement [21] which
makes use of improved theory and additional data from a second hyperfine component. The
values for rp and R∞ are highly correlated such that they can be shown in a single graph
(top and bottom axes).
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nucleus. The finite size of the proton therefore contributes around 2 % to the Lamb shift.
A measurement with moderate accuracy was thus sufficient to extract the proton charge
radius with an order of magnitude higher precision than was previously achieved. However,
the result was discrepant by 5.0 standard deviations from the previously accepted value
obtained from hydrogen spectroscopy and electron-proton scattering. This proton radius
puzzle has spurred a number of new measurements (see Figure 1.2). While there is some
tension between the data points, most of the new results are compatible with the muonic
hydrogen value, but disagree with the “H-world” value. This suggests that experimental
issues, such as underestimated systematic errors, may be responsible for the discrepancy.

1.2 From hydrogen to helium ions
Figure 1.3 shows a timeline of the accuracy achieved in measurements of the 1S-2S tran-
sition frequency in hydrogen. Until the late 1990s, the uncertainty was limited by the
optical frequency metrology, i.e. by how well the frequency of the spectroscopy laser could
be determined [24]. This problem was solved with the invention of the optical frequency
comb which allows counting the frequency of a laser with the accuracy of the best atomic

1985 1990 1995 2000 2005 2010 2015
Year

10−14

10−13

10−12

10−11

10−10

10−9

R
el

at
iv

e
ac

cu
ra

cy

Figure 1.3: Timeline of hydrogen 1S-2S spectroscopy. The optical frequency metrology
evolved from molecular vapor cells (blue squares) over optical frequency chains (orange
triangles) to optical frequency combs (green circles). The blue dashed line shows the
second-order Doppler shift for atomic hydrogen at 4 K. The red circles are measurements
in antihydrogen [22, 23].
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clocks [25, 26].
The uncertainty of the best 1S-2S measurements [10, 11] is now limited by motional

effects, such as the relativistic second-order Doppler effect and time-of-flight broadening.
To give a sense for the scale of the issue, the relative second-order Doppler shift of transi-
tions in atomic hydrogen at liquid helium temperature (≈ 4 K) is −6 × 10−13 [27, p. 238].
This is two orders of magnitude larger than the achieved measurement uncertainty (see
Figure 1.3).

In many atoms motional effects can be minimized by trapping and laser cooling. How-
ever, hydrogen is notoriously difficult to laser cool due to the very short wavelength of
the 1S-2P transition of 121.6 nm [28]. Trapping of hydrogen under conditions suitable for
highly accurate spectroscopy has not yet been achieved, and the best measurements were
performed on cryogenic atomic beams.

We have therefore set out to perform spectroscopy on the 1S-2S transition in the
hydrogen-like ion He+. Due to their charge, He+ ions can be suspended near-motionless in
vacuum using the oscillating electric fields of a Paul trap. This provides an ideal environ-
ment for high precision spectroscopy. The charge radius of the 4He nucleus (alpha particle)
has been measured with high accuracy using spectroscopy on muonic helium ions [29]. By
using Equation 1.8, the 1S-2S transition frequency in 4He+ and the alpha particle charge
radius can be combined to obtain a value for the Rydberg constant. Comparing this value
with the one obtained from hydrogen spectroscopy will be a sensitive test of QED in this
yet unexplored system.

Figure 1.4 shows the relevant levels of 4He+. Like in hydrogen, the 2S state is metastable
which leads to a natural linewidth of the 1S-2S transition of only 84 Hz [14]. The Z2 scaling
of the energy levels results in a two-photon transition wavelength of 60.8 nm which lies in
the extreme ultraviolet (XUV) wavelength range. Working in this wavelength range is
extremely challenging since it lies far below the transparency range of any bulk material.
This means that no refractive optics and no laser sources are available. It also precludes the
use of nonlinear crystals for efficiently converting narrow-band laser light into the XUV.

1S1/2

2S1/2
2P1/2,3/2

Figure 1.4: Level scheme of 4He+. The two times larger nuclear charge leads to four times
shorter transition wavelengths compared to hydrogen. Since the alpha particle has zero
spin, there is no hyperfine structure. The 2S state can be ionized by radiation with a
wavelength below 91.1 nm.
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Instead, high-order harmonic generation (HHG) can been used for generating XUV
radiation [30]. This process occurs when highly intense short (usually sub-ps) laser pulses
are focused into a target. The large electric field strength inside the laser pulses creates
a strong nonlinear response in the target. This results in the emission of harmonics of
the driving radiation. In isotropic media, such as gases, only odd-order harmonics are
being generated. At first glance, using short pulses appears incompatible with the goal
of performing precision spectroscopy on a narrow spectral line. The bandwidth of a laser
pulse is on the order of the inverse pulse duration. For sub-ps pulses we therefore expect
bandwidths of at least hundreds of GHz which is more than nine orders of magnitude larger
than the natural linewidth of the 1S-2S transition. However, the picture changes when the
spectrum of the entire pulse train emitted by a mode-locked pulsed laser is considered.
As we will show in chapter 3, the spectrum consists of a comb of individual modes which
can be as narrow as the best continuous-wave lasers. Already in 1977, Ye. Baklanov and
V. Chebotayev pointed out that this mode structure could be used for efficient excitation
of two-photon transitions [31]. It turns out that the excitation rate is equal to that of a
continuous-wave laser with the same average power. Furthermore, the spectral width of the
resonance is only limited by the width of the individual modes and of the atomic line, not
by the broad spectral envelope of the pulses. An impressive demonstration of this scheme
is the spectroscopy on the 1S-3S transition in hydrogen which was performed in our group
at MPQ [16]. In this experiment, spectroscopy light at 205 nm was generated by fourth-
harmonic generation of the output of a mode-locked Ti:sapphire laser in nonlinear crystals.
The high intensity of the ps pulses enabled a significantly higher conversion efficiency
compared to continuous-wave sources. The experiment achieved a relative uncertainty of
2.5×10−13 which makes it the second most precise measurement on atomic hydrogen, only
surpassed by spectroscopy on the much narrower 1S-2S line.

The pulsed two-photon excitation scheme requires a high degree of phase coherence
between the pulses. This has so far only been demonstrated for mode-locked laser oscillators
with pulse repetition rates of at leasts tens of MHz. At such high repetition rates, a given
amount of average power is distributed over a large number of pulses. This makes it
challenging to achieve the required intensity for driving the HHG process. One solution is
to use a resonant optical cavity to enhance the available peak intensity [32].

Figure 1.5 shows a schematic overview of the setup we have constructed for performing
spectroscopy on the 1S-2S transition in He+. Due to the low efficiency of HHG, it is
advantageous to start with a powerful driving laser system. We use a system based on
Yb-doped gain crystals that can produce average powers of a few hundred W with a center
wavelength of around 1030 nm [33]. The light is then coupled into an enhancement cavity
in which HHG takes place in a xenon gas jet. The generated harmonics are coupled out
from the cavity. The spectroscopy radiation at 60.8 nm corresponds to the 17th harmonic
of the driving laser light.

This radiation is then sent into an ion trap which holds the He+ ions. Direct laser
cooling of He+ is not feasible since the first dipole-allowed transition from the ground
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High power infrared 
frequency comb

Frequency comb at 
60.8 nm

Trapped He+ ions

HHG400 W Innoslab
amplifier

17th harmonic

Figure 1.5: Schematic overview of the He+ spectroscopy setup. A stabilized Yb-based
laser system provides the high power and spectral purity required for XUV generation.
The spectroscopy radiation is generated as the 17th harmonic of the driving laser light
using cavity-enhanced HHG. Finally, the radiation is sent onto trapped He+ ions which
are cooled by co-trapped laser cooled Be+ ions.

state (1S-2P) has a wavelength of 30.4 nm.7 We therefore indirectly cool the He+ ions by
mixing them with laser cooled Be+ ions. After successful excitation to the 2S state, the
He+ ions can be ionized to He2+ by absorbing another photon with a wavelength below
91.1 nm. The production of these ions can be detected with high sensitivity by measuring
their characteristic mechanical resonances in the ion trap. This will serve as the signal for
performing the spectroscopy.

This thesis is organized as follows. First, the necessary theoretical background is re-
viewed. This parts consists of chapter 2 which focuses on ion trapping and laser cooling,
and of chapter 3 in which two-photon direct frequency comb spectroscopy is discussed in
detail. Then chapter 4 reports on the design, construction, and characterization of the
ion trap system. In chapter 5 a test of the ion detection scheme is presented where real-
time detection with single-particle sensitivity was achieved. We furthermore found that
the infrared frequency comb that drives the HHG process requires exceptional spectral
purity. We have therefore constructed and characterized a low-noise driving laser system
which is described in chapter 6. Finally, in chapter 7 two-photon excitation of trapped
Be+ ions is proposed as a “test experiment” that can be performed before attempting the
He+ spectroscopy.

In parallel to the work reported here, the enhancement cavity for HHG was set up by
J. Weitenberg, A. Ozawa, and J. Moreno. Once this system is fully operational, a first
search for the resonance line can be started.

7Since this is a one-photon transition, it cannot be efficiently excited with a frequency comb.
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Chapter 2

Ion trapping and cooling

Trapping particles, i.e. confining them without collisions with the walls of a container,
allows studying their fundamental properties with minimal disturbances from the envi-
ronment. Trapped particles are therefore ideal targets for accurate laser spectroscopy
measurements of their energy levels. Important applications are optical atomic clocks in
which narrow optical transitions in trapped atoms or ions are used as frequency standards.
These clocks have reached relative frequency uncertainties of a few parts in 1018 [34–37].
Frequency comparisons of optical clocks are therefore among the most accurate measure-
ments ever performed. Atom trapping also provides almost perfect thermal insulation and
prevents the condensation of cold gases that would occur upon contact with a surface. It
is therefore an essential ingredient for the preparation of gases at ultra-low temperatures
which allows the observation of new phases of matter such as Bose-Einstein condensates [38,
39].

Atomic or molecular ions are particularly well suited for trapping. This is because their
net charge allows controlling their motion with external electromagnetic fields. Since ion
traps only act on the net charge, they are insensitive to the internal state of the atom or
molecule. Stable trapping requires that the ion experiences a restoring force when it leaves
the center of the trap along any of the three Cartesian axes. It is easy to see that this
cannot be achieved with a static electric potential alone. Any electric potential φ has to
fulfill Laplace’s equation:

∆φ = ∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = 0, (2.1)

and can therefore not have a local minimum in all three directions.
One technique for overcoming this limitation is to combine a static quadrupole electric

field with a static homogeneous magnetic field. This configuration closely resembles the
Penning vacuum gauge where the field configuration is used to maximize the path that
electrons travel within a discharge. It was therefore named Penning trap by its inventor
H. Dehmelt. Penning traps have been used in some extremely accurate measurements, for
example in mass comparisons of different atoms and subatomic particles [40, 41], and in
the measurement of the g-factor of the electron [42]. However, the strong magnetic field
required for the particle confinement leads to large Zeeman shifts of atomic energy levels.
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This makes Penning traps difficult to use for highly accurate atomic spectroscopy. Here,
Paul traps are commonly employed since they can confine ions in an essentially field-free
region.

2.1 Paul traps

In 1953, W. Paul and H. Steinwedel described a mass spectrometer that is based on send-
ing ions through an oscillating quadrupole electric field [43]. Such a field can be produced
by applying an oscillating voltage to a set of four hyperbolic electrodes as shown in Fig-
ure 2.1 (a). As we will show below, the trajectories of ions travelling through such a
quadrupole guide fall into two classes of solutions depending on the charge-to-mass ratio
of the ions and on the parameters of the applied field. The first class consists of stable
trajectories where the ion coordinates remain bounded for any initial conditions. The sec-
ond class contains solutions that grow exponentially such that the ions collide with the
electrode surfaces after a short time. Under appropriate operating conditions, only ions
with a small range of charge-to-mass ratios can pass through the device. Such quadrupole
mass filters are widely used in commercial mass spectrometers, for example for rest gas
analysis in vacuum systems.

(a) (b)

x

y

z
x y

z

Figure 2.1: (a) Quadrupole ion guide, and (b) Paul trap. Electrodes with matching colors
have the same voltage.

Paul and colleagues soon realized that the same principle can be applied to confine ions
along all three axes. In 1958, they first described their “Ionenkäfig” (ion cage) which later
became known as a Paul trap or radio frequency (RF) ion trap [44]. The trap electrodes
have hyperbolic shapes and are split into two “endcap” electrodes and a “ring” electrode
between which an oscillating voltage is applied (see Figure 2.1 (b)).
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2.1.1 Working principle
An electric quadrupole potential with a static component and a component that is sinu-
soidally oscillating at frequency Ω can in general be written as [45]

φ(x, y, z, t) = U

2 (αx2 + βy2 + γz2) − V

2 cos(Ωt)(α′x2 + β′y2 + γ′z2). (2.2)

Since the potential has to fulfill Equation 2.1 at all times, the coefficients are restricted to

α + β + γ = 0, (2.3)
α′ + β′ + γ′ = 0. (2.4)

We can now analyze the linear quadrupole guide shown in Figure 2.1 (a). If the finite
length of the guide can be neglected, we expect no field component in z direction such that

α = −β,
α′ = −β′,

γ = γ′ = 0.
(2.5)

On the other hand, the Paul trap shown in Figure 2.1 (b) is rotationally symmetric around
the z axis such that

α = β = −1
2γ,

α′ = β′ = −1
2γ

′.
(2.6)

The motion of a charged particle in the potential given by Equation 2.2 is decoupled in the
three coordinates. In the following we only treat the motion along x since the formulas for
y and z can be obtained by replacing the appropriate coefficients. The equation of motion
is

mẍ = −Q∂φ(x, y, z, t)
∂x

= −Q[Uα − V cos(Ωt)α′]x, (2.7)

where m is the mass and Q is the charge of the ion.
After introducing the constants

ax = 4QUα
mΩ2 , (2.8)

qx = 2QV α′

mΩ2 , (2.9)

and transforming time into units of RF half-cycles (τ = Ωt/2), we obtain:

d2x

dτ 2 + [ax − 2qx cos(2τ)]x = 0. (2.10)
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This is the Mathieu differential equation which was originally derived to describe vibrations
of an elliptic membrane [46]. A detailed discussion of Equation 2.10 in the context of
ion trapping can be found in the literature [45, 47]. The result is that the a-q-plane is
divided into stable and unstable regions. In stable regions the ion coordinate remains
bounded for arbitrary initial conditions, whereas in unstable regions the coordinate grows
exponentially with time. The stability diagram is shown in Figure 2.2. Flipping the sign of
qx in Equation 2.10 is equivalent to shifting the initial phase of the oscillating potential by
π. The stability diagram is therefore symmetric with respect to qx, and only the positive
half is shown in the plot. In our ion trap we only work in the first stable region that
includes the origin (ax, qx) = (0, 0).

0 1 2 3 4 5
qx

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

a
x

Figure 2.2: Stability diagram of the Mathieu differential equation 2.10. The first four
stable regions are shaded in different colors.

Stable solutions of the Mathieu differential equation can be written as [47, p. 20]

x(τ) = Ax

∞∑
n=−∞

c2n cos[(βx + 2n)τ ] +Bx

∞∑
n=−∞

c2n sin[(βx + 2n)τ ], (2.11)

where Ax and Bx depend on the initial conditions. The stability parameter βx and the
coefficients c2n depend only on ax and qx and can be iteratively calculated using continued
fraction expressions [47, p. 21].

From Equation 2.11 we can see that the ion motion is a superposition of harmonic
oscillations with an infinite set of frequencies that are spaced by integer multiples of the
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trap drive frequency Ω:
ωx,n = 1

2βxΩ + nΩ. (2.12)

The fundamental frequency given by n = 0 is called the secular frequency

ωsec,x = 1
2βxΩ. (2.13)

2.1.2 Pseudopotential approximation
It is instructive to analyze the ion motion in the limit of weak confinement which is defined
by

|ax|, q2
x ≪ 1. (2.14)

Then the stability parameter can be approximated by

βx ≈
√
ax + q2

x

2 , (2.15)

and in Equation 2.11 the coefficients c2n with |n| > 1 can be neglected. The ion motion
becomes [47, pp. 24–25]

x(t) = x0

[
1 − qx

2 cos(Ωt)
]

cos(ωsec,xt+ φ0,x), (2.16)

where x0 and φ0,x are determined by the initial conditions. The exact solution using
Equation 2.11 and the approximation using Equation 2.16 are compared in Figure 2.3.

0 25 50 75 100
τ

−1

0

1

x
(a

.u
.)

0 25 50 75 100
τ

Figure 2.3: Exact (solid blue line) and approximate (dashed orange line) solutions of the
Mathieu differential equation 2.10. In the left plot ax = 0 and qx = 0.1, and in the right
plot ax = 0.05 and qx = 0.5.
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From the condition of weak confinement, it follows that β ≪ 1 and therefore ωsec,x ≪ Ω.
We can separate the motion into two terms:

x(t) = X(t) + ξ(t), (2.17)

where
X(t) = x0 cos(ωsec,xt+ φ0,x) (2.18)

is the slow secular motion at frequency ωsec,x, and

ξ(t) = −qx

2 cos(Ωt)X(t) (2.19)

is the superimposed fast micromotion at frequency Ω. The micromotion amplitude is
proportional to X(t) and is at most qx/2 times the secular motion amplitude.

The secular motion can be interpreted as the ion moving in an effective harmonic
potential which is called the pseudopotential of the trap. The x-component of this potential
is

Φx(X) = 1
2mω

2
sec,xX

2 = maxΩ2

8 X2 + mq2
xΩ2

16 X2, (2.20)

where we have used Equation 2.13 and Equation 2.15. The first term of Equation 2.20
is the electrostatic potential of the trap which is characterized by the ax parameter (see
Equation 2.2 and Equation 2.8). The second term is the dynamic confinement due to the
oscillating field. It can be related to the micromotion as follows. Since the secular motion
is much slower than the micromotion, X(t) changes only slightly during one period of the
micromotion. We can therefore treat it as a time-independent parameter in Equation 2.19.
The cycle-averaged kinetic energy of the micromotion becomes

Emm(X) = 1
2m

〈
ξ̇(t)2

〉
≈ mq2

xΩ2

8 X2
〈
sin2(Ωt)

〉
= mq2

xΩ2

16 X2, (2.21)

where ⟨⟩ signifies averaging over one micromotion cycle. Naively one might expect that the
force due to the RF field averages out and should not affect the secular motion. However,
it is the micromotion that generates the net attractive force in the pseudopotential. This
can be seen by comparing Equation 2.20 and Equation 2.21. The dynamic confinement
term of the pseudopotential is given by the mean kinetic energy of the micromotion. Since
the micromotion grows with increasing distance from the trap center, this leads to an
attractive potential.

In contrast to a purely electrostatic potential, the pseudopotential does not have to
fulfill Laplace’s equation and can therefore be attractive along all three axes. The pseu-
dopotential of Paul traps can be very deep compared to typical neutral atom traps. If
we take for example a secular frequency of ωsec,x = 2π × 1 MHz and a trap with a radius
r0 = 0.5 mm, a Be+ ion (m = 9 u) has to climb a potential of 0.46 eV to get from the
trap center to the electrode surface. By dividing this by the Boltzmann constant, we get
a characteristic temperature of 5300 K. The trap can therefore easily confine ions at room
temperature, and collisions with background gas molecules can only very rarely transfer
enough kinetic energy to kick out ions from the trap.
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2.1.3 Linear Paul traps
We can see from Equation 2.16 that the micromotion vanishes at the node of the oscillating
quadrupole field. In the classical Paul trap shown in Figure 2.1 (b), this is only the case
in a single point at the center of the trap. If more than one ion is trapped, the ions spread
out due to the mutual Coulomb repulsion. This means that at most a single ion can sit in
the trap center, and all the other ones experience micromotion. This leads to a number of
detrimental effects when addressing the stored ions with laser light.

If the micromotion has a component parallel to the laser beam, the light appears phase
modulated in the rest frames of the ions. The resulting modulation sidebands appear at
multiples of the trap drive frequency. In Paul traps for atomic ions, this is typically a
few tens of MHz which is comparable to the linewidth of atomic transitions used for laser
cooling. The micromotion amplitude is qx/2 times the distance from the trap center [48].
For typical q parameters in the range of 0.1 to 0.3, already a displacement of a few µm
results in a modulation amplitude on the scale of optical wavelengths. In this case the
spectrum is strongly modulated, i.e. the strengths of the modulation sidebands can exceed
that of the carrier. Furthermore, the ions experience different laser spectra depending on
how far they are located from the trap center. Laser cooling relies on precise control of the
detuning between the cooling laser and an atomic resonance (see section 2.2). Micromotion
therefore makes it difficult to efficiently laser cool large ensembles of ions in a classical Paul
trap [49].

In precision spectroscopy micromotion also leads to systematic shifts of the atomic
resonances due to the second-order Doppler effect and due to the Stark effect caused by
the oscillating electric field [48]. We will discus the expected influence of ion micromotion
on our He+ spectroscopy experiment in subsection 4.7.3.

These micromotion effects can be strongly reduced by using linear Paul traps [50, 51].
These traps are essentially quadrupole guides with an additional static quadrupole electric
field preventing the ions from exiting the guide along its axis. One exemplary electrode
configuration is shown in Figure 2.4.

In an ideal (infinitely long) linear Paul trap, the node of the oscillating potential forms
a line along the trap axis. Linear strings of many ions can be trapped on the nodal line
without experiencing micromotion. Furthermore, even ions that are off-axis experience
micromotion only in the radial direction. By aligning the laser beam along the trap axis,
large numbers of ions can be laser cooled without the detrimental effect of micromotion
sidebands. In real linear Paul traps, there is some residual axial micromotion due to the fi-
nite length of the electrodes and due to manufacturing imperfections (see subsection 4.7.3).
However, the micromotion is typically much weaker than in a classical Paul trap and can
be tolerated in many applications.

Linear Paul traps with many different electrode geometries have been demonstrated.
These range from traps that still resemble a quadrupole guide to surface-electrode traps
in which all electrodes are located in a single plane [52]. We employ linear traps with
three-dimensional electrode arrangements and therefore limit our discussion to this type of
geometry. A common simplification of the quadrupole guide is to use electrodes with circu-
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Figure 2.4: Linear Paul trap. The oscillating voltage V cos(Ωt) −U is applied between the
red and blue pairs of “rod” electrodes in order to provide radial confinement. The static
voltage Uec is applied to the yellow “endcap” electrodes for axial confinement.

lar cross sections [53]. Since the electrode surfaces no longer correspond to the hyperbolic
equipotential surfaces of a quadrupole potential, the potential acquires higher-order terms.
The potential can be written in cylindrical coordinates as a multipole expansion [54]:

φ(θ, t) = [V cos(Ωt) − U ]
∞∑

n=0
Cn

(
r

r0

)2(2n+1)
cos[2(2n+ 1)θ]. (2.22)

Due to the symmetry of the electrode arrangement, the potential has to change sign upon
rotation by π/2 around the axis of the guide. Therefore, the expansion only contains
terms proportional to (r/r0)m, where m = 2, 6, 10, 14, . . . . The expansion coefficients Cn

depend on the ratio between the radius of the electrodes R and the distance r0 between
the electrode surfaces and the center axis (see Figure 2.4). A numerical solution of the
boundary value problem shows that C1, which is the coefficient of the 12-pole term, vanishes
for R = 1.146 r0 [54]. This ratio is therefore often chosen in order to minimize the
anharmonicity of the potential.

Stability diagram

The radial confinement is generated by the oscillating voltage V cos(Ωt)−U that is applied
between the diagonal pairs of electrodes (see Figure 2.4). Near the trap axis we can
approximate the potential with the n = 0 (quadrupole) term of Equation 2.22 and get

φrad(x, y, t) = V cos(Ωt) − U

2r2
eff

(x2 − y2), (2.23)
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where reff = r0/
√

2C0 is the effective radial size of the trap which can be calculated
numerically for a given geometry (see section 4.1.2).

The axial confinement is generated by a symmetric pair of electrodes whose surfaces
are at a distance z0 from the center of the trap and which are held at a voltage Uec. The
shape of the resulting potential depends on the particular electrode shape. Close to the
trap center, we can approximate it as a quadrupole potential and obtain

φax(x, y, z) = κUec

2z2
0

[
z2 − 1

2(x2 + y2)
]
, (2.24)

where κ is a geometrical factor that depends on the shape of the electrodes and can be
determined using numerical simulations. Since the axial confinement is due to a static
potential, the motion along z is stable provided that QUec > 0. In contrast to classical
Paul traps, linear traps can confine either positive or negative ions, but not both at the
same time. The axial secular frequency is

ωz =
√
QκUec

mz2
0
. (2.25)

The Mathieu parameters for the radial motion are

qx = −qy = − 2QV
mΩ2r2

eff
, (2.26)

ax = − 4QU
mΩ2r2

eff
− 2QκUec

mΩ2z2
0
, (2.27)

ay = 4QU
mΩ2r2

eff
− 2QκUec

mΩ2z2
0
. (2.28)

For weak confinement we can calculate the approximate secular frequencies using Equa-
tion 2.13 and Equation 2.15. We get

ωsec,x =
√
ω2

rf − ω2
dc − 1

2ω
2
z , (2.29)

ωsec,y =
√
ω2

rf + ω2
dc − 1

2ω
2
z , (2.30)

where
ω2

rf = Q2V 2

2m2Ω2r4
eff
, (2.31)

and
ω2

dc = QU

mr2
eff
. (2.32)

Due to Laplace’s equation, the axial confinement leads to deconfinement along x and y
which lowers the corresponding secular frequencies. In contrast to that, the static offset
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voltage U leads to confinement along x and deconfinement along y or vice versa. The
motions along the axes are stable if the respective Mathieu parameters are inside the
stable regions shown in Figure 2.2.

Figure 2.5 shows the combined stability diagrams for the radial directions in two special
cases. The first is when the axial confinement can be neglected, i.e. ω2

z ≪ ω2
rf . In this case

ax = −ay, and the linear Paul trap is essentially a quadrupole guide. The second case is
when no offset voltage U is applied to the rod electrodes such that ω2

dc = 0. This means
that the trap potential is radially symmetric and the Mathieu parameters and secular
frequencies are identical for the motions along x and y.
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Figure 2.5: Combined stability diagrams for a linear Paul trap for negligible axial confine-
ment strength (left) and for radially symmetric confinement (right). The regions of stable
operation are colored blue. In the first case the a parameter is determined by the static
offset voltage U applied between the rod electrodes. In the second case the a parameter is
due to the axial confinement only. It has to be negative for stable confinement along the
trap axis.

2.1.4 Trapping different species

The Mathieu a and q parameters are proportional to the charge-to-mass ratio Q/m of
the ion species. This means that multiple ion species can be held in the same trap only
if their respective stability diagrams overlap. We typically operate our trap with almost
symmetrical radial confinement (right plot in Figure 2.5). The relevant species for the He+

spectroscopy experiment are Be+, He+, and He2+. Figure 2.6 shows the combined stability
diagrams for this case. All three species can be trapped simultaneously if qx ≲ 0.2 for Be+.
We can also see that the radial deconfinement due to the axial confinement will destabilize
the motion of Be+ before that of the lighter species.
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Figure 2.6: Stability diagrams for different ion species relevant for He+ spectroscopy in a
radially symmetric linear Paul trap (U = 0).

2.1.5 Trapping many ions
If multiple ions are stored in the same trap, their trajectories and equilibrium positions are
affected by the mutual Coulomb repulsion. Since this is an all-to-all interaction, the number
of terms in the equations of motion increases with the square of the number of particles,
and analytical solutions are usually not possible. Instead, one has to resort to numerical
molecular dynamics simulations (see section 5.5). However, we can get an intuition for the
dynamics by approximating the ions as a charged fluid at zero temperature. In equilibrium
the fluid takes a shape such that a test ion inside it would feel no force. This means for
the combined potential [55]:

Φ +Qϕi = const., (2.33)
where Φ is the pseudopotential of the trap given by Equation 2.20, and ϕi is the electrostatic
potential created by the ions. By taking the Laplacian on both sides and using Poisson’s
equation, we get

1
Q

∆Φ = −∆ϕi = ρ

ε0
, (2.34)

where ρ is the charge density of the ions, and ε0 is the vacuum electric permittivity. For a
linear Paul trap, we use Equations 2.29-2.31 and find

ρ = Qn = 2ε0mω
2
rf

Q
= ε0QV

2

mΩ2r4
eff
, (2.35)
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where n is the ion number density.
The ions arrange themselves with a uniform density that only depends on the strength of

the dynamic part of the confinement in the trap. The shape of the ion cloud is determined
by Equation 2.33 which requires that the potential inside the ion cloud is a quadratic
function in the coordinates. This condition is fulfilled for an ellipsoid with a constant
charge density [56, p. 194]. The dimensions of the ellipsoid can be calculated by equating
the coefficients of the pseudopotential Φ with those of the electric potential inside the
charge distribution. However, the resulting equations are quite lengthy and in general do
not have analytic solutions. We therefore do not give them here and instead refer to the
literature [56, pp. 194–195, 57, 58].

2.2 Laser cooling
Maxwell’s equations predict that light exerts pressure onto objects that reflect or absorb it.
This effect was first measured by P. Lebedew in 1901 using a sensitive torsion balance [59].
The forces on macroscopic objects are usually extremely small, but lead to measurable
effects on the trajectories of astronomical objects and spacecraft. The situation is different
for atoms that are resonantly excited by laser light. In this case the scattering cross
section is on the order of the wavelength squared [60, p. 27]. The ratio between the cross
section and the mass is many orders of magnitude larger than for macroscopic objects.
Light pressure forces can therefore lead to a considerable acceleration of resonantly excited
atoms.

Laser cooling was first proposed in 1975 for free atoms [61] and for trapped ions [62].
We limit our discussion to Doppler cooling which is used in the experiment. The basic idea
of this method is that the light pressure can be made velocity dependent by employing the
Doppler shift of a laser beam in the frame of a moving atom. In the following we further
assume that cooling takes place on a strong electric dipole transition whose excited state
lifetime τ is much shorter than the time scale of the atomic motion. For a trapped ion this
is fulfilled if the period of the secular motion along the laser beam is much longer than
τ , and if micromotion can be neglected. In this case the populations of the atomic levels
are in a steady state for each atomic velocity. If an atom absorbs a photon, it receives a
momentum kick ∆p = ℏk, where ℏ is the reduced Planck constant, and k is the laser wave
vector. Spontaneous emission of photons also leads to momentum kicks. However, since
the angular distribution of spontaneous emission is symmetric, this contribution averages
to zero. The mean force therefore is [45]

Fc(v) = ℏkΓρee(v), (2.36)

where Γ = 1/τ is the spontaneous decay rate, which is equal to the 2π times the full width
at half maximum (FWHM) linewidth of the atomic transition, and

ρee(v) = s/2
1 + s+

(
∆−k·v

Γ/2

)2 (2.37)
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is the steady-state probability of finding the atom in the excited state. ∆ = ω − ω0 is
the detuning between the laser frequency ω and the transition frequency ω0 in an atom at
rest, −k · v is the Doppler shift of an atom moving with velocity vector v, and s is the
saturation parameter which is proportional to the light intensity. For small velocities, i.e.
when k · v ≪ ∆, the force can be linearized in the velocity [45]:

Fc(v) ≈ F0(1 + κ · v), (2.38)

where
F0 = ℏkΓ s/2

1 + s+
(

∆
Γ/2

)2 (2.39)

is the velocity-independent component of the radiation pressure, and

κ = 8∆/Γ2

1 + s+
(

∆
Γ/2

)2 k. (2.40)

We can see that for ∆ < 0 (red-detuned laser) the velocity-dependent part of the force
acts against the direction of motion and therefore provides damping.

So far we neglected that the force is created by discrete absorption and emission events.
The resulting random momentum kicks prevent the atoms from being cooled to zero ve-
locity. At this point it is worth discussing how to apply the concept of “temperature” to
small numbers of trapped ions. The temperature of a macroscopic sample is often defined
via the mean kinetic energy of the very large number of constituent particles. Since we
are dealing with only a few particles, or even a single one, this ensemble average has to be
replaced with a time average. Furthermore, the motions along the different trap axes can
be almost completely decoupled such that the total kinetic energy is not necessarily evenly
distributed among the degrees of freedom. We therefore define the temperature Tu of a
particular degree of freedom u by the relation kBTu/2 = Ekin,u, where Ekin,u is the kinetic
energy due to the motion in the degree of freedom, and kB is the Boltzmann constant.

An approximate expression for the equilibrium temperature of the motion along the
cooling laser direction can be derived by equating the cooling power due to the damping
and the heating power due to the momentum kicks [45]. The result is

T = ℏΓ
8kB

(1 + ξ)
[
(1 + s)Γ/2

|∆|
+ |∆|

Γ/2

]
, (2.41)

where the factor ξ = 2/5 represents the average component of the random emission recoil
kicks that is directed along the cooling laser [45].

The temperature only depends on the linewidth of the cooling transition, the saturation
parameter, and the cooling laser detuning. Figure 2.7 shows a plot of Equation 2.41 for
laser cooling of Be+ on the D2 line (Γ = 2π × 18 MHz). The minimum temperature is
achieved at a detuning of

∆min = −Γ
2

√
1 + s, (2.42)
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Figure 2.7: Equilibrium temperature for Doppler cooling of Be+. The width of the D2 line
is Γ = 2π × 18 MHz (see section 2.5). The solid blue line is plotted for the limit of small
saturation (s → 0), the dashed orange line for s = 1, and the dotted green line for s = 10.

where it takes the value

Tmin = ℏΓ
4kB

(1 + ξ)
√

1 + s. (2.43)

The minimum attainable temperature is called the Doppler limit. For cooling of Be+ on
the D2 line, it is 0.30 mK.

Three orthogonal pairs of counter-propagating laser beams are required to cool all
degrees of freedom of a free atom (“optical molasses”). This is different for trapped ions
since the direction of motion reverses in each half-cycle of the secular motion. A single
laser beam that has a projection onto all three trap axes is therefore sufficient to laser
cool single trapped ions. If the trapped ions form a three-dimensional Coulomb crystal
(see below), the motion along different trap axes is strongly coupled due to the Coulomb
interaction between the ions. In this case cooling is efficient even when the laser beam is
aligned parallel to one of the axes. In order to avoid the detrimental effects of micromotion
(see subsection 2.1.3), large ion crystals in linear Paul traps are usually laser cooled using
a single beam that propagates along the trap axis.
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2.3 Ion Coulomb crystals
The structural properties of an ensemble of trapped ions depend on the ratio between the
Coulomb interaction energy between neighboring particles and the mean kinetic energy of
the particles. This is characterized by the Coulomb correlation parameter [47, p. 263]

Γc = 1
4πε0

Q2

aWS

1
kBT

, (2.44)

where aWS is the Wigner-Seitz radius, kB is the Boltzmann constant, and T is the ion
temperature.1 The Wigner-Seitz radius is the radius of a sphere whose volume is equal to
the average volume per ion, such that

4
3πa

3
WS = 1

n
, (2.45)

where n is the ion number density.
In an infinitely large system of charges, there is a phase transition from gaseous to liquid

for Γc ≥ 2, and the system crystallizes into a regular lattice at Γc ≈ 174 [63]. For a typical
value of aWS ≈ 10 µm, this corresponds to a temperature of around 10 mK. The behavior of
finite systems is different due to surface effects. Molecular dynamics simulations show that
this lowers the crystallization point [64]. For example, the phase transition in a spherical
cloud of 100 ions is predicted to occur at a three times lower temperature than in an infinite
system [64]. Figure 2.8 shows examples for Be+ ion crystals of different sizes that were
produced in our trap.

Large ion crystals, such as the one shown in Figure 2.8 (d), typically reach temperatures
of a few mK under laser cooling. This temperature is significantly higher than the Doppler
limit which is due to collisions between the trapped ions and rest gas molecules. Molecular
dynamics simulations show that under these conditions the ions are not completely local-
ized, but can diffuse between crystal sites on ms time scales [64–66]. This motion is not
resolved in our ion images since we typically use camera exposure times between 200 ms
and a few seconds. The images should therefore be interpreted as probability density plots,
rather than as images of individual particles [65].

2.4 Sympathetic cooling and mixed ion crystals
Laser cooling relies on the ability to resonantly scatter a large number of photons from an
atom or molecule (see section 2.2). However, many interesting ionic species do not possess
suitable transitions. In general laser cooling of molecules is challenging since they have
a large number of rotational and vibrational states, and closed transitions usually do not
exist [67]. In atomic ions very short transition wavelengths are often problematic. This is
the case in our He+ ions where the first electric dipole transition from the ground state is

1In a large ensemble of trapped ions, the strong coupling usually leads to good thermalization of the
different degrees of freedom. It is therefore possible to uniquely assign the ensemble a single temperature.
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(a) (b) (c)

10 µm

(d)

100 µm

Figure 2.8: Fluorescence images of Be+ ion crystals in our trap. The crystals consist of
(a) one, (b) four, (c) seven, and (d) around 2000 ions. The ion crystal in (d) is a three-
dimensional ellipsoid, and only one “slice” of ions close to the center axis of the crystal is
in the focus of the imaging system.

the 1S-2P transition which has a wavelength of 30.4 nm. There is currently no technology
that can produce radiation at this wavelength with a linewidth that is narrow enough for
laser cooling. Other examples for atomic ions that cannot be laser cooled are 27Al+, which
is used in some of the best optical atomic clocks [37], and highly charged ions [68].

Sympathetic cooling is a powerful and universal scheme for overcoming these limita-
tions. The basic idea is to mix the ions with another ion species that can be laser cooled.
The motion of different ions that are stored in the same trap is strongly coupled due to
the mutual Coulomb interaction. The ions therefore quickly thermalize, and cooling one
species also indirectly cools all other ones. If a sufficiently low temperature is reached, the
ions form a Coulomb crystal.

Figure 2.9 shows an example from our ion trap. The fluorescence image contains eight
laser cooled Be+ ions that form a regular “zigzag” structure. However, one ion is “missing”
from the position marked by the white arrow. This is the location of a sympathetically
cooled “dark” ion of a different species. Most likely it is a BeH+ ion that can be formed
in an exothermic chemical reaction between laser cooled Be+ ions and H2 molecules from
the rest gas in our trap vacuum chamber [69].

In a linear Paul trap, the radial confinement is stronger for an ion with a larger charge-
to-mass ratio (see section 2.1.3). Large mixed crystals of equally charged ions therefore
separate into a “core” consisting of the lightest species and one or more “shells” of the
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10 µm

Figure 2.9: Fluorescence image of a mixed ion crystal consisting of eight laser cooled Be+

ions and one dark ion (most likely BeH+).

heavier ions (see Figure 2.10). The separation between the ions increases for larger dif-
ferences in charge-to-mass ratios. This reduces the motional coupling between the species
and therefore limits the sympathetic cooling efficiency [66]. For sympathetic cooling of the
very light He+ ions, we therefore use 9Be+ which is the lightest ion species that can be
conveniently laser cooled.

100 µm

(a)

(b)

Figure 2.10: (a) Fluorescence image of a mixed Be+/He+ ion crystal. Only the laser
cooled Be+ ions are visible. The sympathetically cooled He+ ions experience stronger
radial confinement and form a dark “core” in the center of the ion crystal. (b) Coulomb
crystal structure obtained by a molecular dynamics simulation (see section 5.5). The
simulation contains 1450 Be+ ions (red spheres) and 50 He+ ions (yellow spheres). Radial
view (left) and axial view (right) of the same crystal.

2.5 The Be+ ion
Be+ is an alkali-like ion with a filled 1s shell and a single valence electron in the 2s subshell.
Like other alkalis it features a strong electric dipole transition between the ground state
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and the first excited state that is split into a fine structure doublet. The fine structure
arises due to the interaction between the intrinsic magnetic moment of the electron and its
orbital magnetic moment in the excited state. These characteristic transitions were first
observed in the emission spectrum of sodium and are called the D1 and D2 lines. In Be+ the
wavelengths of the D1 (2s 2S1/2 → 2p 2P1/2) and D2 (2s 2S1/2 → 2p 2P3/2) transitions are
313.2 nm and 313.1 nm, respectively [70]. In this work we use the D2 line for laser cooling
and fluorescence detection since it can be driven as a cycling transition (see below).

Transition linewidth

The lifetime of the 2p states was measured by two different groups in the 1960s which
yielded somewhat discrepant results of 8.1(4) ns [71] and 9.5(2) ns [72].2 Z.-C. Yan, M.
Tambasco, and G. Drake have performed precise calculations of the oscillator strengths in
lithium and lithiumlike ions [74]. For the 2p 2P3/2 state in Be+, they obtain a lifetime
of 8.8519(8) ns, resulting in an FWHM linewidth of 17.9797(16) MHz. For lithium, where
accurate lifetime measurements are available, the calculations agree with the measurements
to a few parts in 104. We therefore believe that the calculation for Be+ is more reliable
than the measurements and use a linewidth of 18 MHz in this thesis.

Hyperfine structure

The only naturally occurring isotope 9Be has a nuclear spin quantum number I = 3/2 and
therefore has hyperfine structure. The hyperfine energy shift for a state with electronic
angular momentum quantum number J and total atomic angular momentum quantum
number F is given by [75, p. 26]

∆Ehfs = 1
2AK +B

3
2K(K + 1) − 2I(I + 1)J(J + 1)

2I(2I − 1)2J(2J − 1) , (2.46)

where K = F (F + 1) − I(I + 1) − J(J + 1), and A and B are the magnetic dipole
and electric quadrupole hyperfine constants, respectively. Only nuclei with I > 1/2 and
electronic states with J > 1/2 can have electric quadrupole moments. Therefore, B is zero
unless both I and J are greater than 1/2 [75, pp. 26–27].

The ground state hyperfine constant of 9Be+ has been accurately measured using ra-
dio frequency spectroscopy in Penning traps [76, 77]. The resulting value is AS1/2/h =
−625 008 837.044(12) Hz, where h is the Planck constant. The hyperfine splitting of the
2p 2P3/2 state is smaller than the inverse lifetime of the state and is therefore unresolved
in optical spectroscopy. Values for the magnetic dipole and electric quadrupole hyperfine
constants have been calculated from measured values of the magnetic dipole moment and
electric quadrupole moment of the 9Be nucleus [78]. The values are AP3/2/h = −1.026 MHz
and BP3/2/h = −2.299 40 MHz. Figure 2.11 shows the resulting level scheme of the D2 line.

2[72] is a reanalysis of the data from [73] in which the uncertainty estimate was increased by a factor
of 10.
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Figure 2.11: Level scheme of the 9Be+ D2 line. The hyperfine centroid frequency is taken
from [70]. The hyperfine splittings are calculated with Equation 2.46 using measured [76,
77] and calculated [78] hyperfine constants for the ground state and excited state, re-
spectively. In the excited state the electric quadrupole hyperfine constant has a larger
magnitude than the magnetic dipole hyperfine constant. This leads to a somewhat un-
usual order of the hyperfine levels.

Cycling transition

Laser cooling and fluorescence detection require scattering many photons from each ion.
For 9Be+ this can be achieved by driving the D2 transition with circularly polarized light. If
for example σ− polarization is used, the selection rule for photon absorption is ∆mF = −1,
while spontaneous decay can occur with ∆mF = 0,±1. The ion is therefore rapidly
pumped into the transition between the “stretched states” S1/2(F = 2,mF = −2) and
P3/2(F = 3,mF = −3) which is indicated by the solid black arrow in Figure 2.12. Since
the upper stretched state can only decay into the lower stretched state, this effectively forms
a closed two-level system that continuously scatters photons. In practice imperfect laser
polarization and misalignment between the magnetic field that defines the quantization
axis and the laser beam allows the excitation of states other than the upper stretched
state. From these the ion can decay into the S1/2(F = 1) manifold. The cooling laser
which is tuned close to the S1/2(F = 2) →P3/2(F = 3) transition is off-resonant from the
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S1/2(F = 1) →P3/2 transition by roughly the ground state hyperfine splitting of 1.25 GHz.
Therefore, the photon scattering rate from the S1/2(F = 1) ground state is low and the
state is called a dark state. Optical pumping into the dark state is therefore prevented
by adding a second “repumper” laser beam that is resonant with the S1/2(F = 1) →P3/2
transition.

F = 1

F = 2

mF 0-1-2-3 1 2 3

F = 1

F = 2

F = 0

F = 3

2S1/2

2P3/2

Figure 2.12: Driving the S1/2(F = 2) →P3/2(F = 3) cycling transition with a σ− polarized
laser beam (black solid arrow). The upper state of the cycling transition can only decay
into the lower one (red wavy arrow), forming an effective two-level system. Imperfections
of the laser polarization or magnetic field alignment can lead to optical pumping of the ion
into the S1/2(F = 1) dark state. This is prevented by a “repumper” beam that is resonant
with the S1/2(F = 1) →P3/2 transition (black dashed arrow).



Chapter 3

Two-photon direct frequency comb
spectroscopy on trapped ions

In this section we first review the theory of driving two-photon transitions with frequency
combs. Working with trapped particles leads to peculiar features in the excitation dynam-
ics. We briefly summarize the main points that are relevant for our application. Finally, we
analyze different potential excitation geometries that could be used for driving the 1S-2S
transition in He+ and motivate our choice.

3.1 Optical frequency combs
An optical frequency comb is a laser which emits a regular train of phase-coherent pulses.
Mathematically this means that the electric field of the laser output can be written as

E(t) = 1
2A(t)e−iωct + c.c., (3.1)

where ωc is the carrier frequency, and A(t) is the pulse envelope function. The pulse
repetition rate ωrep = 2π/T is defined by the condition A(t) = A(t − T ). The shape of
such a pulse train is illustrated in Figure 3.1 (a).

Since A(t) is periodic in time, it can be written as a Fourier series [79]:

A(t) =
∞∑

m=−∞
Ãme

−imωrept, (3.2)

where the Fourier coefficients are given by

Ãm = 1
T

∫ T/2

−T/2
A(t)eimωreptdt. (3.3)

By inserting Equation 3.2 into Equation 3.1, we obtain

E(t) = 1
2

∞∑
m=−∞

Ãme
−i(mωrep+ωc)t + c.c.. (3.4)
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Figure 3.1: Output of an optical frequency comb in the time and frequency domains. (a)
The frequency comb pulses (orange lines) can be described as a monochromatic carrier
wave that is modulated by an envelope function (blue lines). The shape of the first pulse
is repeated in the second and third pulse as a dashed line in order to illustrate the pulse-
to-pulse phase slippage ∆φ. (b) An infinitely long pulse train results in a comb of narrow
spectral lines. The phase slippage leads to an offset frequency ωceo = ∆φ/T .

The spectrum acquires a comb of sidebands around ωc which are spaced by integer multiples
of ωrep (see Figure 3.1 (b)). The frequencies of the resulting comb modes are given by

ωm = mωrep + ωc. (3.5)

Since ωc is in general not an integer multiple of ωrep, the comb structure “misses” the origin
if we extrapolate it towards low frequencies. This offset frequency can be determined by
re-numbering Equation 3.5:

ωn = nωrep + ωceo, (3.6)
where |ωceo| < ωrep/2. It can be shown that this offset is related to the carrier-envelope
phase slippage ∆φ by ωceo = ∆φ/T [79]. It is therefore called the carrier-envelope offset
frequency. While ωrep can be easily measured by sending part of the pulse train onto a
photodetector, determining ωceo is more challenging. The standard technique is to use an
f − 2f interferometer. First, the frequency comb spectrum is broadened, for example by
nonlinear interactions in a photonic crystal fiber, until it covers more than one octave.
Then there exists a mode number n such that both ωn and ω2n fall within the spectrum
of the frequency comb. The spectral components around ωn are then frequency doubled
in a nonlinear crystal and are overlapped with the spectral components around ω2n on a
photodetector. This results in a beat note at [80]

2(nωrep + ωceo) − (2nωrep + ωceo) = ωceo. (3.7)
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Both ωrep and ωceo are radio frequencies and can therefore be electronically counted and/or
controlled with feedback loops acting on the laser. Equation 3.6 then provides a direct link
from the radio frequency domain to the optical frequencies of the comb modes [81].

Elastic tape picture

As a consequence of Equation 3.6, the frequencies of the different comb modes are strongly
correlated with each other. Any perturbation of the laser oscillator, whether intentionally
applied in order to control the parameters, or caused by noise, has some effect on ωrep
and ωceo. The resulting mode frequencies ωn can be visualized as an “elastic tape” con-
taining equidistant spectral lines that stretches or contracts around a fixed point ωfix on
the frequency scale [82]. The position of the fixed point depends on the particular type of
perturbation and does not have to lie within the output spectrum of the frequency comb.
Fully stabilizing the modes of a frequency comb therefore requires two actuators that affect
ωrep and ωceo in a different way.

One important question is how well the output of a real frequency comb follows the
elastic tape picture. We can quantify this by writing [83]

ωn(t) = nωrep(t) + ωceo(t) + δω(n, t), (3.8)

where δω(n, t) are fluctuations of the mode frequencies that do not comply with the elastic
tape picture. Frequency combs are used to measure the frequency ratios between different
optical frequency standards. In this context extremely small values of δω(n, t)/ωn(t) on
the level of a few parts in 1021 have been demonstrated for averaging times of around one
day [84–86]. The deviations were attributed to differential drifts of the optical path lengths
between the different lasers used in the comparisons. The fundamental limit due to the laser
oscillators themselves could therefore be even lower. One explanation for this astonishing
level of accuracy is that any deviation from the perfectly equidistant comb mode spacing
would lead to a rapid “dissolution” of the pulse circulating inside the laser oscillator. This
is prevented by the mode-locking mechanism that forms the laser pulses [79].

In our work we use frequency combs based on passively mode-locked laser oscillators.
In such systems the pulsed output is being generated by a fast nonlinear mechanism, such
as the Kerr effect, that tightly couples all modes of the frequency comb [82]. It is therefore
reasonable to assume that δω(n, t) is also very small on much shorter time scales. This
is supported by a number of experimental measurements of the correlations between the
noise of different comb modes in which good agreement with the elastic tape picture was
observed [83, 87–89].

3.2 Two-photon transitions
In our experiment we want to drive transitions between the 1S and 2S states in He+. In
the electric dipole approximation, the transition strength between the atomic states |g⟩
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and |e⟩ is governed by the dipole matrix element [60, p. 50]

deg = ⟨e|d̂|g⟩ = ⟨e|−er̂|g⟩, (3.9)

where e is the elementary charge, and r̂ is the atomic electron position operator. Since the
wave functions of both S states have the same even parity, we can immediately see that
the dipole matrix element for the 1S-2S transition is zero. We will therefore have to resort
to a different mechanism for exciting our transition.

Already in 1931, M. Göppert-Mayer was able to show theoretically that atoms can be
excited by the simultaneous absorption of a pair of photons whose frequencies add up to
the transition frequency [90]. We start our analysis by considering the interaction between
an atom and one or more laser fields. For simplicity we assume that all lasers have the
same linear polarization in z direction.1 The Hamiltonian for this problem is

Ĥ = Ĥ0 + V̂ (t), (3.10)

where Ĥ0 is the atomic Hamiltonian, and

V̂ (t) = eẑE(r, t). (3.11)

The total electric field is

E(r, t) = 1
2
∑
m

[
Em(r, t)e−iωmt + E∗

m(r, t)eiωmt
]
, (3.12)

where Em(r, t) and ωm are the complex amplitude and the frequency of the mth laser field,
respectively. The level scheme of our atom is shown in Figure 3.2. We assume that the
atom has two energy levels |g⟩ and |e⟩ that have the same parity such that dipole transition
between them are not allowed. Furthermore, it has intermediate states {|n⟩} of opposite
parity that are connected to |g⟩ and |e⟩ via dipole transitions.

We can write the state of the atom at time t as

|α(t)⟩ =
∑

k

ck(t)e−iẼkt/ℏ|k⟩, (3.13)

where |k⟩ are the eigenstates of the unperturbed Hamiltonian Ĥ0 with energy eigenvalues
Ẽk, and ℏ = h/(2π) is the reduced Planck constant. Inserting |α(t)⟩ into the Schrödinger
equation yields differential equations for the coefficients [92, p. 319]:

iℏ
d

dt
ck(t) =

∑
l

Vkl(t)eiωkltcl(t), (3.14)

1High harmonic generation produces linearly polarized light. Furthermore, it turns out that the dynam-
ics of two-photon transitions between S states remain unchanged under rotations of the linear polarization
direction [91].
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Figure 3.2: Level scheme of the two-photon absorption process. Pairs of fields at frequencies
ωm and ωm′ drive transitions between the ground state |g⟩ and excited state |e⟩. The
intermediate states |n⟩ are connected with |g⟩ and |e⟩ via one-photon transitions, but all
laser fields are far off-resonant from the transitions.

where ωkl = (Ẽk − Ẽl)/ℏ, and Vkl(t) = ⟨k|V̂ (t)|l⟩. The matrix elements of the operator are

Vkl(t) = e

2⟨k|ẑ|l⟩
∑
m

[
Em(r, t)e−iωmt + E∗

m(r, t)eiωmt
]
. (3.15)

As discussed above the dipole matrix elements between states of equal parity vanish:

⟨g|ẑ|e⟩ = ⟨n1|ẑ|n2⟩ = 0, (3.16)

where |n1⟩, |n2⟩ ∈ {|n⟩}.
We can therefore simplify the differential equations for the coefficients of the states |g⟩,

|e⟩, and the intermediate states {|n⟩}:

ċg(t) = − ie

2ℏ
∑

{|n⟩}

∑
m

⟨g|ẑ|n⟩
[
Em(r, t)ei(ωgn−ωm)t + E∗

m(r, t)ei(ωgn+ωm)t
]
cn(t), (3.17)

ċe(t) = − ie

2ℏ
∑

{|n⟩}

∑
m

⟨e|ẑ|n⟩
[
Em(r, t)ei(ωen−ωm)t + E∗

m(r, t)ei(ωen+ωm)t
]
cn(t), (3.18)

ċn(t) = − ie

2ℏ
∑
m

{
⟨n|ẑ|g⟩

[
Em(r, t)ei(ωng−ωm)t + E∗

m(r, t)ei(ωng+ωm)t
]
cg(t)

+ ⟨n|ẑ|e⟩
[
Em(r, t)ei(ωne−ωm)t + E∗

m(r, t)ei(ωne+ωm)t
]
ce(t)

}
.

(3.19)

If we assume that the atom starts out in the ground state such that cn(t) vanishes as
t → −∞, we can write a formal solution of Equation 3.19 as

cn(t) =
∫ t

−∞
ċn(t′)dt′. (3.20)

The expression contains integrals of the form∫ t

−∞
Em(r, t′)ei∆t′

cx(t′)dt′, (3.21)
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where x = {g, e}, and ∆ = ωnx ±ωm. Since all laser fields are far off-resonant from dipole-
allowed transitions, ei∆t oscillates at optical frequencies. We assume that the time evolution
of cg(t) and ce(t), and variations of the field amplitudes Em(r, t) are slow compared to the
time scale set by ∆−1. This allows us to make the zeroth-order Markov approximation [93]
which means that we replace Em(r, t′)cx(t′) ≈ Em(r, t)cx(t) in the integral in Equation 3.21.
We obtain ∫ t

−∞
Em(r, t′)ei∆t′

cx(t′)dt′ ≈ Em(r, t)ei∆t

i∆ cx(t). (3.22)

With this approximation Equation 3.19 can be solved:

cn(t) ≈ − e

2ℏ
∑
m

{
⟨n|ẑ|g⟩

[
Em(r, t)ei(ωng−ωm)t

ωng − ωm

+ E∗
m(r, t)ei(ωng+ωm)t

ωng + ωm

]
cg(t)

+⟨n|ẑ|e⟩
[
Em(r, t)ei(ωne−ωm)t

ωne − ωm

+ E∗
m(r, t)ei(ωne+ωm)t

ωne + ωm

]
ce(t)

}
.

(3.23)

We can now substitute this expression for cn(t) into Equation 3.17 and Equation 3.18 and
apply the rotating wave approximation. This means that we neglect all terms that oscillate
at optical frequencies. We obtain

ċg(t) ≈ ie2

4ℏ2

∑
{|n⟩}

∑
m,m′

{

|⟨g|ẑ|n⟩|2
[
Em(r, t)E∗

m′(r, t)e−i(ωm−ωm′ )t

ωng + ωm′
+ E∗

m(r, t)Em′(r, t)ei(ωm−ωm′ )t

ωng − ωm′

]
cg(t)

+ ⟨g|ẑ|n⟩⟨n|ẑ|e⟩E
∗
m(r, t)E∗

m′(r, t)e−i[ωeg−(ωm+ωm′ )]t

ωne + ωm′
ce(t)

}
,

(3.24)

and

ċe(t) ≈ ie2

4ℏ2

∑
{|n⟩}

∑
m,m′

{

|⟨e|ẑ|n⟩|2
[
Em(r, t)E∗

m′(r, t)e−i(ωm−ωm′ )t

ωne + ωm′
+ E∗

m(r, t)Em′(r, t)ei(ωm−ωm′ )t

ωne − ωm′

]
ce(t)

+ ⟨e|ẑ|n⟩⟨n|ẑ|g⟩Em(r, t)Em′(r, t)ei[ωeg−(ωm+ωm′ )]t

ωng − ωm

cg(t)
}
.

(3.25)

A comparison of Equation 3.24 and Equation 3.25 with Equation 3.14 shows that we have
obtained an effective two-level system where the interaction is given by the two-photon
operator

V̂2p(t) =
(
ℏ∆ωg(t) Vge(t)
Veg(t) ℏ∆ωe(t)

)
, (3.26)
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where

∆ωg = −
(
e

2ℏ

)2 ∑
{|n⟩}

∑
m,m′

|⟨g|ẑ|n⟩|2

[
Em(r, t)E∗

m′(r, t)e−i(ωm−ωm′ )t

ωng + ωm′
+ E∗

m(r, t)Em′(r, t)ei(ωm−ωm′ )t

ωng − ωm′

]
,

(3.27)

∆ωe = −
(
e

2ℏ

)2 ∑
{|n⟩}

∑
m,m′

|⟨e|ẑ|n⟩|2

[
Em(r, t)E∗

m′(r, t)e−i(ωm−ωm′ )t

ωne + ωm′
+ E∗

m(r, t)Em′(r, t)ei(ωm−ωm′ )t

ωne − ωm′

]
,

(3.28)

Vge

ℏ
= −

(
e

2ℏ

)2 ∑
{|n⟩}

∑
m,m′

⟨g|ẑ|n⟩⟨n|ẑ|e⟩E
∗
m(r, t)E∗

m′(r, t)ei(ωm+ωm′ )t

ωne + ωm′
, (3.29)

Veg

ℏ
= −

(
e

2ℏ

)2 ∑
{|n⟩}

∑
m,m′

⟨e|ẑ|n⟩⟨n|ẑ|g⟩Em(r, t)Em′(r, t)e−i(ωm+ωm′ )t

ωng − ωm′
. (3.30)

The diagonal elements ∆ωg and ∆ωe change the effective energy levels of the atom, but
do not lead to transitions between the states. This effect is called the ac Stark shift.
Transitions between the states are mediated by the off-diagonal elements.

Figure 3.3 (a) shows an intuitive picture for the two-photon absorption process. The
first photon at frequency ωm off-resonantly excites the atom to an intermediate state |n⟩.
From there the second photon at frequency ωm′ completes the transition to the final state
|e⟩. From this picture it is clear that two-photon transitions connect two states of the same
parity such as our 1S and 2S states. Another interpretation of the same process is shown
in Figure 3.3 (b). The presence of one of the light fields perturbs the ground state |g⟩ into
a virtual intermediate state |δg⟩. From there the other field can drive the transition to the
final state |e⟩ [91]. The ac Stark shifts can be interpreted as transitions where the initial
and final states are the same.

3.2.1 Frequency comb excitation
We are now ready to analyze the dynamics of two-photon excitation driven by a frequency
comb. The electric field of a frequency comb is given in Equation 3.4. By comparison
with Equation 3.12, we can identify ωm = mωrep + ωc and Em(r, t) = Ãm (the spatial
dependence of the field is included in the next section). The double sums over m and m′ in
the two-photon operator (Equations 3.27-3.30) can be simplified as follows. We re-number
the comb modes such that

E(t) = 1
2

∞∑
m=−∞

Ã′
me

−i(mωrep+ω0)t + c.c., (3.31)
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(a) (b)

Figure 3.3: Two interpretations of the two-photon transition process. The solid arrows
show a pair of fields at frequencies ωm and ωm′ that drive the transition. (a) The dashed
arrow shows the excitation of the atom from the ground state |g⟩ via one of the intermediate
states |n⟩ to the final state |e⟩. (b) The field at frequency ωm perturbs the atomic ground
state into a virtual intermediate state |δg⟩. From there the second field at frequency ωm′

completes the transition to the final state |e⟩.

where ω0 is the frequency of the comb mode that is closest to ωeg/2, and the coefficients
are given by

Ã′
m = Ãm−µ, (3.32)

where µ = (ωc − ω0)/ωrep.
The condition for achieving two-photon resonance is ωm +ωm′ = (m+m′)ωrep + 2ω0 ≈

ωeg. In our new numbering scheme, this corresponds tom = −m′. Non-resonant terms with
m ̸= −m′ are detuned from the resonance by integer multiples of ωrep. In our experiment we
use a laser with ωrep = 2π×40 MHz, while the expected transition linewidth is a few kHz at
most (see section 3.3). The contribution of the non-resonant terms is therefore negligible,
and they are dropped in the following. The time domain picture of this approximation is
that the pulsed excitation is replaced with a continuous time averaged excitation. This
is valid since the atomic state lifetime is much longer than the time interval between the
individual pulses.

We further make the assumption that the bandwidth of the frequency comb is much
smaller than its carrier frequency ωc. The spectrum of our XUV frequency comb at 60.8 nm
has not been accurately characterized yet. However, we expect that the bandwidth will be
around 0.4 nm such that this approximation is well justified. This allows us to replace ωm′

by ωc in the denominator in Equation 3.30. We obtain

Veg

ℏ
= − e2

4ℏ
∑

{|n⟩}

⟨e|ẑ|n⟩⟨n|ẑ|g⟩
Ẽn − Ẽg − ℏωc

∑
m

Ã′
mÃ

′
−me

−i2ω0t. (3.33)

The ac Stark shifts in Equation 3.26 can be taken into account by adjusting the effective
energy levels. Then the resulting two-photon operator is equivalent to the well known
operator that describes the dynamics of a two-level atom with a dipole-allowed transition
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between the levels (see for example chapter 5 in [94]). We can identify the two-photon
detuning [91]

∆ω = 2ω0 − ωeg − (∆ωe − ∆ωg), (3.34)

and the two-photon Rabi frequency

Ω2p = − e2

2ℏ
∑

{|n⟩}

⟨e|ẑ|n⟩⟨n|ẑ|g⟩
Ẽn − Ẽg − ℏωc

∑
m

Ã′
mÃ

′
−m. (3.35)

The excitation process is visualized in Figure 3.4. The sum ∑
m Ã

′
mÃ

′
−m in Equation 3.35

can be interpreted as the pairwise interaction of frequency comb modes that lie symmet-
rically around ωeg/2 and whose photon energies add up to the transition energy.

ω

E(ω)

Figure 3.4: Illustration of two-photon excitation with a frequency comb. Two-photon
resonance is achieved if ωeg/2 coincides with a comb mode, or lies exactly in the center
between two modes. In this case all modes contribute pairwise to the excitation. If the
frequency of the entire comb is scanned, the excitation spectrum repeats every ωrep/2.

Motional effects

As a next step the spatial dependence of the electric field is introduced. We assume that
the frequency comb pulses propagate along the x axis. The field is then given by replacing
t with t− x/c in Equation 3.4:2

E(x, t) = E(t− x/c) = 1
2

∞∑
m=−∞

Ãme
−i(mωrep+ωc)(t−x/c) + c.c.

= 1
2

∞∑
m=−∞

Ãm(x)e−i(mωrep+ωc)t + c.c., (3.36)

where we have defined the position-dependent Fourier coefficients

Ãm(x) = Ãme
i(mωrep+ωc)x/c. (3.37)

2The refractive index is set to 1 since our experiments generally take place in vacuum.
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This allows us to use the results from the previous section by replacing Ãm with Ãm(x) in
the formulas.

As we will show below, motional effects can be strongly suppressed by exciting the atom
with two counter-propagating pulse trains. For mathematical convenience we assume that
the individual pulses have a Gaussian envelope:

EI(t) =
√

I

ε0c

√
2 4

√
2
π

√
T

τ
e−(t/τ)2

, (3.38)

where I is the average intensity of the pulse train, ε0 is the vacuum electric permittivity,
c is the speed of light, and T is the pulse repetition time. The intensity FWHM of the
pulses is ∆t1/2 =

√
2 ln(2)τ . The corresponding position-dependent Fourier coefficients are

given by

Ãm,I(x) = ei(mωrep+ωc)x/c 1
T

∫ T/2

−T/2
EI(t)eimωreptdt ≈ ei(mωrep+ωc)x/c 1

T

∫ ∞

−∞
EI(t)eimωreptdt

= 2
√

I

ε0c
4

√
π

2

√
τ

T
e− 1

4 (mωrepτ)2
ei(mωrep+ωc)x/c,

(3.39)
where in the second step we assumed that the pulse duration τ is much shorter than the
pulse repetition time T .

The total electric field of the two pulse trains is

E(x, t) = 1
2

∞∑
m=−∞

[Ãm,I1(x) + Ãm,I2(−x)]e−i(mωrep+ωc)t + c.c., (3.40)

where I1 and I2 are the intensities of the two pulse trains. By comparing Equation 3.40
and Equation 3.36, we identify:

Ãm(x) = Ãm,I1(x) + Ãm,I2(−x)

= 2
√
ε0c

4

√
π

2

√
τ

T
e− 1

4 (mωrepτ)2
[√

I1e
i(mωrep+ωc)x/c +

√
I2e

−i(mωrep+ωc)x/c
]
. (3.41)

For simplicity we assume that the spectrum of the frequency comb is centered with respect
to the two-photon resonance, i.e. 2ωc = 2ω0 ≈ ωeg. This corresponds to µ = 0 in Equa-
tion 3.32 such that Ã′

m(x) = Ãm(x). From Equation 3.35 we then get the two-photon Rabi
frequency:

Ω2p = − e2

2ℏ
∑

{|n⟩}

⟨e|ẑ|n⟩⟨n|ẑ|g⟩
Ẽn − Ẽg − ℏωc

∑
m

Ã′
m(x)Ã′

−m(x). (3.42)

The product of the two position-dependent Fourier coefficients is

Ã′
m(x)Ã′

−m(x) = 2
√

2π
ε0c

τ

T
e− 1

2 (mωrepτ)2
[
I1e

i2ωcx/c + I2e
−i2ωcx/c

+
√
I1I2

(
ei2mωrepx/c + e−i2mωrepx/c

) ]
. (3.43)
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The expected 0.4 nm intensity FWHM of our XUV frequency comb corresponds to a band-
width of 32 THz. With a pulse repetition rate of 40 MHz, the comb therefore contains
around one million modes. We can therefore replace the sum over the modes in Equa-
tion 3.42 by an integral using ∑m ≈ 1

ωrep

∫∞
−∞ d(mωrep). The integral can be evaluated, and

we arrive at the final expression for the two-photon Rabi frequency:

Ω2p = 2(2πβge)
[
I1e

i2ωcx/c + I2e
−i2ωcx/c + 2

√
I1I2e

−2[x/(cτ)]2
]
, (3.44)

where
βge = − e2

2hcε0

∑
{|n⟩}

⟨e|ẑ|n⟩⟨n|ẑ|g⟩
Ẽn − Ẽg − ℏωc

(3.45)

is the two-photon matrix element. For hydrogen-like atoms βge can be calculated analyt-
ically. Values for a number of two-photon transitions in hydrogen are tabulated in [91].
The results can be applied to other two-body Coulomb systems by multiplying with the
factor [91]

1
Z4

(
me

µ

)3

, (3.46)

where Z is the nuclear charge number, me is the electron mass, and µ is the reduced
mass of the two particles forming the system. For the two-photon excitation of the 1S-2S
transition in He+ driven at 60.8 nm, the value is [95]

βge = 2.301 64 × 10−6 Hz (W/m2)−1. (3.47)

Remarkably, we find that at x = 0 the two-photon Rabi frequency given by Equation 3.44
is identical to the one obtained for a pair of continuous-wave lasers of the same average
intensities [91]. One can also show that the ac Stark shifts are given by the average
intensities of the excitation lasers, and not by the much higher peak intensities of the laser
pulses [96].

The first two terms in Equation 3.44, which are proportional to I1 and I2, correspond
to two-photon absorption where both photons come from a single beam. They have x-
dependent phase factors with the effective wave vectors ±2ωc/c. This collinear excitation
process is therefore affected by motional effects such as Doppler shifts and recoil effects.

The third term, which is proportional to
√
I1I2, corresponds to anticollinear excitation

where one photon is absorbed from either beam. One peculiar feature is that away from
the coordinate origin, the term drops off exponentially on the scale of cτ . This shows
that the absorption process can only take place inside the pulse collision volume where the
counter-propagating pulses meet. The size of the pulse collision volume can be defined by
the distance between the points where the Rabi frequency has dropped by one half. The
resulting FWHM size is

∆x1/2 =
√

2 ln(2)cτ = c∆t1/2. (3.48)
The phase factor is absent in this term which shows that, like in the continuous-wave laser
case, the anticollinear absorption process is not affected by the first-order Doppler shift.
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However, due to the finite bandwidth of the frequency comb, only the average wave vector
is zero. The absorbed photon pairs in general have nonzero total momenta such that the
process is not entirely decoupled from the atomic motion. We will come back to this point
in section 3.4.

3.3 Excitation dynamics
The electronic state of a He+ ion is described by the density matrix in the rotating
frame [91]:

ρ =
(
ρgg ρ′

ge

ρ′
eg ρee

)
, (3.49)

where ρgg and ρee are the populations of the 1S ground state and the 2S excited state,
respectively, and ρ′

ge and ρ′
eg = ρ′∗

ge are the coherences in the rotating frame. The time
evolution of the density matrix is determined by the optical Bloch equations [91]:

ρ̇gg = −Ω2p Im(ρ′
ge) + Γsρee, (3.50)

ρ̇′
ge = −i∆ωρ′

ge + i
Ω2p

2 (ρgg − ρee) − Γs + Γi

2 ρ′
ge, (3.51)

ρ̇ee = Ω2p Im(ρ′
ge) − (Γs + Γi)ρee, (3.52)

where Γs is the spontaneous decay rate of the 2S state. One feature of all hydrogen-
like systems is that a laser that can excite the 1S-2S two-photon transition has sufficient
photon energy to ionize the 2S state.3 This is taken into account by the decay terms in
Equation 3.51 and Equation 3.52 which are proportional to the 2S ionization rate

Γi = 2πβioniI, (3.53)

where I is the mean laser intensity, and βioni is the ionization rate coefficient. For hydrogen-
like atoms βioni can be calculated analytically. The expression and values for several tran-
sitions in hydrogen are given in [91]. Like the two-photon matrix elements, the rate co-
efficients can be applied to other two-body Coulomb systems by scaling them with Equa-
tion 3.46. For ionization of the 2S state of He+ by 60.8 nm radiation, one finds [95]

βioni = 7.516 09 Hz (W/m2)−1. (3.54)

The interplay between decay and ionization of the 2S state leads to rich dynamics which
cannot be described by simple rate equations (see [91] and [95] for detailed descriptions
of the dynamics). In our experiment the first challenge will be to find the resonance line.
The 1S-2S transition frequency in He+ can be calculated with an estimated uncertainty of

3Our high-harmonic source generates all odd harmonics of the driving laser at 1033 nm. The 2S state
of He+ can be ionized by the 13th and higher harmonics. The calculations in this chapter are done for
the 17th harmonic only since the output spectrum of the high harmonic source has not been accurately
characterized yet.
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70 kHz which is limited both by QED theory, and by the uncertainty of the alpha particle
charge radius [12, 29]. This contrasts with a natural linewidth of only 84 Hz [14]. To search
the line we will step the laser frequency over a range that covers a few standard deviations
around the calculated value. At each frequency point the He+ ions will be exposed to the
spectroscopy laser for a certain amount of time. Then the generation of He2+ ions will be
measured by exciting the secular motion of the trapped ions (see chapter 5). The exposure
time and frequency step size have to be carefully chosen. If the time is too short or the
step size is too large, we could “miss” the line during the scan. On the other hand, very
long exposure times and small step sizes lead to very long measurement times.

Equations 3.50-3.52 are numerically integrated for an exposure time of t0 = 5 s and
different spectroscopy laser intensities I and two-photon detunings ∆ω. In this section
we ignore all motional effects and give values for collinear excitation with a single laser
beam (this corresponds to setting I1 = I and I2 = 0 in Equation 3.44). The ionization
probability at the end of the exposure, which is given by 1 − ρee(t0) − ρgg(t0), is shown in
Figure 3.5.
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Figure 3.5: Calculated ionization probabilities after exposing a He+ ion with resonant XUV
radiation for 5 s for Γs = 2π × 84 Hz (left), and for Γs = 2π × 350 Hz (right). From top to
bottom the curves correspond to intensities of 10, 5, 2, and 1 µW/µm2.

In the left plot the 2S decay rate was set to the natural linewidth (Γs = 2π × 84 Hz).
If a He+ ion experiences an electric field, the 2S and 2P states are mixed which reduces
the 2S lifetime [95]. While a trapped ion arranges itself such that it feels no electric
field on average, the mean square field can be nonzero if the ion experiences micromotion.
In the right plot we have set Γs = 2π × 350 Hz which is a typical value we expect due
to micromotion in our setup (see subsection 4.7.3). The plots show that achieving a
sufficiently high laser intensity is crucial for the success of the experiment. Besides ensuring
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reliable excitation on resonance, high intensities also saturate and broaden the spectral line
which allows using a larger step size in the frequency scan. Furthermore, the comparison
between the two plots shows that at low intensities the expected lifetime reduction of the
2S state will strongly reduce the ionization rate. On the other hand, at high intensities
the ionization process dominates over the 2S decay such that the ionization probabilities
are hardly affected.

3.4 Motional dynamics
In precision laser spectroscopy the interaction between the atomic motion and the field
of the laser is an important source of line shifts and broadening. In the rest frame of
a moving atom, the laser frequency appears shifted due to the Doppler effect. If the
atomic velocities follow a thermal distribution, this leads to Doppler broadening of the
spectral line [27, pp. 151–153]. Furthermore, if one or more photons excite a transition,
the atom absorbs their total momentum ℏkeff , where keff is the sum of the wave vectors
of the contributing photons. In free atoms this leads to a shift of the observed transition
frequency which is given by the recoil frequency [27, pp. 149–150]

∆ωrec = ℏk2
eff

2m , (3.55)

where keff = |keff |, and m is the atomic mass.
The dynamics are quite different if the spectroscopy target is a trapped particle. We

first discuss some general features using the simple example of a single trapped ion before
treating the more realistic scenario of multiple ions trapped together. We assume that the
ion is trapped in a one-dimensional harmonic potential with a secular frequency ωsec. The
effective wave vector is for now assumed to be parallel to the direction of motion. The
motion is then described by a quantum harmonic oscillator [45, 97]. The motional state
can be written as a superposition of orthogonal Fock states |n⟩:

|ψ⟩ =
∞∑

n=0
cn|n⟩, (3.56)

where n is the motional quantum number.
The absorption or emission of photons changes the motional state of the atom. The

strength of this motional coupling is quantified by the Lamb-Dicke parameter [45, 95]

η = keffx0 = keff

√
ℏ

2mωsec
=
√

∆ωrec

ωsec
, (3.57)

where x0 =
√
ℏ/(2mωsec) is the size of the ground state wave function of the harmonic

oscillator. The Lamb-Dicke parameter is small if the ground state wave function is much
smaller than 1/keff , or, equivalently, if the recoil frequency is much smaller than the secular
frequency.
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Frequency standards that rely on trapped atoms or ions are usually operated in the
Lamb-Dicke regime which is defined by the condition [45]:

keff

√
⟨x̂2⟩ = η

√
⟨(â+ â†)2⟩ ≪ 1, (3.58)

where
√

⟨x̂2⟩ is the root mean square size of the motional wave function, and the atomic
position operator is expressed as

x̂ = x0(â+ â†), (3.59)

where â and â† are the annihilation and creation operators of the harmonic oscillator,
respectively. Note that η ≪ 1 is a necessary, but not sufficient condition for achieving the
Lamb-Dicke regime since the ground state is the smallest harmonic oscillator state.

In the Lamb-Dicke regime, the absorption spectrum of the ion is dominated by the
so-called carrier resonance. Driving this resonance does not change the motional state,
and the spectral line is free of Doppler broadening and of the recoil shift. Its width is
therefore only limited by the natural linewidth of the atomic transition.

The recoil frequencies for a number of narrow transitions in atomic or ionic species are
compared in Table 3.1. Due to the low atomic mass and short transition wavelength, the
recoil frequency when collinearly exciting the 1S-2S transition in He+ is orders of magnitude
larger than typical values in optical frequency standards. Our ion trap achieves secular
frequencies of up to a few MHz for 4He+ which is much smaller than the recoil frequency.
We therefore have η > 1 and cannot reach the Lamb-Dicke regime.

Table 3.1: Recoil frequencies for a number of narrow transitions used in optical atomic
frequency standards. The numbers for the He+ isotopes refer to collinear excitation of the
1S-2S two-photon transition.

Species Transition wavelength (nm) Recoil frequency ∆ωrec/(2π) (MHz)
3He+ 30.4 71.7
4He+ 30.4 54.0
27Al+ 267.4 0.103
40Ca+ 729.3 0.009
87Sr 698.4 0.005
171Yb 578.4 0.003
171Yb+ 466.9 0.005
199Hg+ 281.6 0.013

The coupling between photon absorption and atomic motion is described by transitions
of the type |g⟩|n⟩ → |e⟩|n+ s⟩. As a result the atomic spectrum acquires sidebands which
are spaced by ∆ω = sωsec from the carrier. The Rabi frequency for the sth sideband is
given by [45]

Ωn,n+s = Ωn+s,n = Ω
∣∣∣⟨n+ s|eikeff x̂|n⟩

∣∣∣ = Ω
∣∣∣⟨n+ s|eiη(â+â†)|n⟩

∣∣∣ , (3.60)
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where Ω is the Rabi frequency in the absence of motional effects. The Rabi frequency is
scaled by a matrix element for the transition between the motional states which is given
by [45, 95]

⟨n+ s|eiη(â+â†)|n⟩ = e−η2/2(iη)|s|

√
n<!
n>!L

|s|
n<

(η2), (3.61)

where n< = min(n + s, n), n> = max(n + s, n), and Lα
n(X) is the generalized Laguerre

polynomial.
Figure 3.6 shows Equation 3.60 evaluated for a collinearly excited 4He+ ion that is

trapped with a secular frequency of ωsec = 2π × 10 MHz. The ion is assumed to start out
in the motional ground state |ψ⟩ = |0⟩. Even then, the Lamb-Dicke regime is not reached
(η = 2.3), and the spectrum consists of a number of sidebands. The recoil frequency of
∆ωrec = 2π × 54 MHz is a few times larger than the sideband spacing. As a result the
strongest sideband is not the carrier at ∆ω = 0, but the one that is closest to ∆ωrec.
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Figure 3.6: Sideband spectrum of a single collinearly excited 4He+ ion trapped with a
secular frequency of ωsec = 2π × 10 MHz. The ion is initially in the motional ground state
|ψ⟩ = |0⟩. Since the recoil shift is much larger than the secular frequency, the Lamb-Dicke
regime is not reached. As a result the spectrum contains a number of sidebands whose
envelope is shifted away from the carrier (thick gray vertical line). Negative sidebands
vanish since there is no motional state whose energy is below the ground state.
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3.4.1 Multiple ions
Since laser cooling of He+ is currently not feasible, it has to be combined with at least one
other ion for sympathetic cooling. The mutual Coulomb interaction couples the motion of
the ions such that the spectrum becomes more complicated. In the following we treat the
general case of N ions that are trapped together and are cold enough such that they form
a Coulomb crystal. The derivation closely follows [98], but we do not make the simplifying
assumption that the ions are arranged in a one-dimensional string.

The position of the jth ion in the Coulomb crystal is rj. The dynamics of the crystal
are determined by the total potential energy

V (r1, . . . , rN), (3.62)

which contains the effect of the trap, as well as the Coulomb interaction between the ions.
We use the pseudopotential approximation for the ion trap such that V does not explicitly
depend on time. The equilibrium configuration of the Coulomb crystal can be found by
minimizing V with respect to the ion positions [99]. The equilibrium position of the jth
ion is denoted r(0)

j . The ion positions are then expressed as [100]

rj = r(0)
j + qjex + qN+jey + q2N+jez, (3.63)

where the parameters qi (i = 1, . . . , 3N) are the displacements from the equilibrium po-
sitions, and ex, ey, and ez are Cartesian unit vectors along the trap axes. The potential
energy is rewritten as

V (r1, . . . , rN) = V (r(0)
1 , . . . , r(0)

N ) + Ṽ (q1, . . . , q3N). (3.64)

Since we are interested in small oscillations of the ions around their equilibrium positions,
Ṽ is approximated by a Taylor series up to second order4 [98]:

Ṽ (q1, . . . , q3N) ≈ 1
2

3N∑
i,j=1

Vijqiqj, (3.65)

where
Vij = ∂2

∂qi∂qj

Ṽ (q1, . . . , q3N)|qi,qj=0. (3.66)

The 3N coupled equations of motion for the parameters are then given by

miq̈i +
3N∑
j=1

Vijqj = 0, (3.67)

where mi is the mass of the ith ion, and mN+i = m2N+i = mi for i = 1, . . . , N .
4The first-order terms vanish since the expansion is performed around an equilibrium position.
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We now introduce the mass-weighted coordinates q′
i = √

miqi. The equations of motion
then simplify to

q̈′
i +

3N∑
j=1

V ′
ijq

′
j = 0, (3.68)

where V ′
ij = Vij/

√
mimj. A general solution of Equation 3.68 consists of a superposition

of oscillations at a set of resonance frequencies ωα (α = 1, . . . , 3N) [101, p. 250]:

q′
i =

3N∑
α=1

Cαβ
α
i e

−iωαt, (3.69)

where Cα is a complex amplitude factor that determines the amplitude and phase of the
oscillation at frequency ωα, and βα

i is the ith component of the normalized eigenvector βα.
Inserting Equation 3.69 into Equation 3.68 yields an eigenvalue problem for the matrix V ′

ij

from which the resonance frequencies ωα and eigenvectors βα can be obtained:

3N∑
j=1

V ′
ijβ

α
j = ω2

αβ
α
i . (3.70)

The eigenvectors define an orthogonal transformation into a set of 3N new coordinates:

πα =
3N∑
i=1

βα
i q

′
i. (3.71)

It can be shown that each of the coordinates πα performs oscillations at only the frequency
ωα [101, p. 252]. They are therefore called the normal coordinates of the system, and
the vibrations are called the normal modes. A quantum description of the normal mode
oscillations is obtained by introducing the position operators for the normal coordinates

π̂α =
√

ℏ
2ωα

(âα + â†
α), (3.72)

where âα and â†
α are the annihilation and creation operators for the normal mode α,

respectively. Since the eigenvectors are orthogonal, Equation 3.71 can be inverted to
express the original coordinates qi in terms of the normal mode coordinates:

qi = 1
√
mi

3N∑
α=1

βα
i πα. (3.73)

Position operators for the original coordinates are then obtained by inserting Equation 3.72
into Equation 3.73 [98]:

q̂i = 1
√
mi

3N∑
α=1

βα
i

√
ℏ

2ωα

(âα + â†
α). (3.74)
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The motional state of the ion crystal can in general be written as a superposition of Fock
states for the normal modes [100]:

|ψ⟩ =
∞∑

{nα}=0
c{nα}|{nα}⟩, (3.75)

where {nα} is a shorthand notation for n1, . . . , n3N .
We can now analyze how the excitation of one of the ions changes the motional state

of the ion crystal. If the ion crystal is initially in the motional state |ψi⟩, and the jth ion
absorbs photons with an effective wave vector keff , the motional state of the ion crystal
changes to [98]

|ψf⟩ = eikeff ·r̂j |ψi⟩, (3.76)

where r̂j = r(0)
j + q̂jex + q̂N+jey + q̂2N+jez is the position operator for the jth ion. The

operator in Equation 3.76 is called the kick operator. It can be rewritten as

eikeff ·r̂j = eiϕjeikeff ·q̂j , (3.77)

where ϕj = keff · r(0)
j is a constant phase term that depends on the equilibrium position of

the ion, and q̂j = q̂jex + q̂N+jey + q̂2N+jez.
Inserting Equation 3.74 into Equation 3.77 finally yields

eikeff ·r̂j = eiϕj

3N∏
α=1

eiηα
j (âα+â†

α), (3.78)

where the generalized Lamb-Dicke parameter for the jth ion and the normal mode α was
introduced:

ηα
j = keff ·

(
βα

j ex + βα
N+jey + βα

2N+jez

)√√√√ ℏ
2mjωα

. (3.79)

If we assume that the ion crystal is in an energy eigenstate |{nα}⟩ = |n1⟩|n2⟩ . . . |n3N⟩,
the excitation of the jth ion can induce transitions to the final states |{nα + sα}⟩. These
transitions lead to sidebands which are spaced by ∆ω = ∑3N

α=1 sαωα from the carrier. As
in the single-ion case, the Rabi frequencies for the sideband transitions are scaled by the
magnitude of the transition matrix elements which are given by [100]:

⟨{nα + sα}|eikeff r̂j |{nα}⟩ = eiϕj ⟨{nα + sα}|
3N∏
α=1

eiηα
j (âα+â†

α)|{nα}⟩

= eiϕj

3N∏
α=1

⟨nα + sα|eiηα
j (âα+â†

α)|nα⟩

= eiϕj

3N∏
α=1

e−(ηα
j )2/2(iηα

j )|sα|

√
nα<!
nα>!L

|sα|
nα<

(
(ηα

j )2
)
, (3.80)

where in the last step we have used Equation 3.61.



50 3. Two-photon direct frequency comb spectroscopy on trapped ions

3.4.2 Comparison of excitation geometries

Be+ can be efficiently photoionized by the absorption of a single photon with a wavelength
shorter than 68.1 nm [102, 103]. It is therefore important to choose a geometry that allows
illuminating the He+ ions with the XUV spectroscopy radiation while avoiding the Be+

ions. Two possible options are shown in Figure 3.7. The first option (“radial collinear
excitation”) is to prepare a linear string of He+ and Be+ ions along the trap axis (the
simplest case is having one of each). The spectroscopy radiation can then be focused onto
one of the He+ ions along the radial plane of the trap [104]. The second option (“axial
anticollinear excitation”) is to load a large mixed ion crystal of Be+ and He+ ions. If
suitable ion numbers are chosen, the lighter He+ ions displace the Be+ ions from the center
of the ion crystal and form a linear string along the trap axis (see also Figure 2.10). The
spectroscopy radiation is then aligned parallel to the trap axis and is sent through the
center of the ion crystal. As we will show below, anticollinear excitation is a prerequisite
for achieving narrow linewidths in large ion crystals. This is achieved by back-reflecting
the frequency comb pulses with an XUV mirror.

(a)

(b)

60.8 nm

60.8 nm

z

zXUV
mirror

Figure 3.7: Possible excitation geometries for the trapped He+ ions. (a) Radial collinear
excitation, and (b) axial anticollinear excitation. Blue dots are He+ ions, and red dots
are Be+ ions used for sympathetic cooling and ion detection. The axis of the linear Paul
trap is along z. Anticollinear excitation is achieved by back-reflecting the frequency comb
pulses using an XUV mirror. In this case the pulses have to collide at the position of the
ions.
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Radial collinear excitation

We start the discussion with the radial excitation of one He+ ion that is sympathetically
cooled by one Be+ ion as shown in Figure 3.7 (a). For simplicity we assume that the ion
trap is radially symmetric such that the secular frequencies in x direction and y direction
are the same. We then choose the coordinates such that the spectroscopy laser beam is
aligned along the x axis. The single-particle radial secular frequencies of the ions are given
by Equation 2.29:

ωsec,x,{He,Be} =
√
ω2

rf,{He,Be} − 1
2ω

2
z,{He,Be}, (3.81)

where ωrf,{He,Be} and ωz,{He,Be} are given by inserting the ion mass m = {mHe,mBe} into
Equation 2.31 and Equation 2.25, respectively.

For a string of ions along the axis of a linear Paul trap, the motions along the three
trap axes are decoupled [100]. The spectroscopy laser therefore interacts only with the two
radial modes of motion in x direction. The eigenvalue problem for the coupled oscillations
of the two ions in x direction can be solved analytically [105]. The motion consists of an
in-phase mode (i) where the ions move in the same direction, and an out-of-phase mode
(o) where the ions move in opposite directions. The resonance frequencies of the modes
are given by

ωi =
√

−µ+ µ2 − ϵ2(1 + µ2) − a

2µ2 ωz,He, (3.82)

ωo =
√

−µ+ µ2 − ϵ2(1 + µ2) + a

2µ2 ωz,He, (3.83)

where a =
√
ϵ4(µ2 − 1)2 − 2ϵ2(µ− 1)2µ(1 + µ) + µ2[1 + (µ− 1)µ], µ = mBe/mHe, and ϵ =

ωsec,x,He/ωz,He. The eigenvectors are

βi =
(
b1
b2

)
, (3.84)

βo =
(

−b2
b1

)
, (3.85)

where

b1 =
√
µ− µ2 + ϵ2(−1 + µ2) + a

2a , (3.86)

b2 =
√

−µ− µ2 + ϵ2(−1 + µ2) − a

2a . (3.87)

The results are visualized in Figure 3.8. The strength of the motional coupling between the
two ions depends on the axial secular frequency ωz,He. For ωz,He ≪ ωrf,He the ions are spaced
far apart such that their radial motions are almost independent. In the other limit when
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ωz,He becomes comparable to ωrf,He, the motions are strongly coupled and both components
of the mode eigenvectors become significant. If ωz,He becomes too large, the resonance
frequency of the out-of-phase mode vanishes. At this point the linear configuration of the
ions along the trap axis becomes unstable, and the ion crystal turns into a linear radial
configuration [105].

0.0

0.5

1.0

ω
i,
o
/ω

rf
,H

e

0.0 0.1 0.2 0.3 0.4 0.5 0.6

ωz,He/ωrf,He

0.0

0.5

1.0

b 1
,2

Figure 3.8: Radial modes of a He+/Be+ two-ion crystal. The top plot shows the resonance
frequencies of the in-phase mode (blue) and out-of-phase mode (orange). In the limit of
weak axial confinement (ωz,He → 0), the motions of the two ions are decoupled. The
resonance frequencies then are those of only the He+ ion (blue dashed line), and of only
the Be+ ion (orange dashed line). The bottom plot shows the two components of the
eigenvectors, b1 (green) and b2 (red). The closer the two values are to each other, the
stronger the ion motion is coupled.

The generalized Lamb-Dicke parameters are obtained by inserting Equations 3.82-3.85
into Equation 3.79. With these, the Rabi frequencies for the different motional sidebands
can be calculated using Equation 3.80. Figure 3.9 shows the resulting sideband spectrum
for collinear excitation of the 1S-2S transition in the He+ ion. It is assumed that both
modes of motion are initially in the ground state. In the left plot ωz,He = 2π × 1.0 MHz is
much smaller than ωrf,He = 2π× 10 MHz. The two ions are therefore essentially decoupled
and the spectrum closely matches the single-ion case shown in Figure 3.6. In the right plot
ωz,He is increased to 2π×5.0 MHz. The motion of the He+ ion is therefore strongly coupled
to both modes such that the spectrum acquires many more sidebands.
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Figure 3.9: Sideband spectrum for collinear radial excitation of the He+ ion in a He+/Be+

two-ion crystal. In both plots ωrf,He = 2π × 10 MHz. The mode frequencies are (left)
ωi = 2π × 10.0 MHz and ωo = 2π × 4.4 MHz, and (right) ωi = 2π × 8.7 MHz and ωo =
2π × 2.8 MHz. It is assumed that both modes are initially in the ground state.

In principle it is possible to perform precision spectroscopy on a motional sideband
instead of on the carrier. The resonance frequencies of the normal modes can typically
be measured to ∼ kHz accuracy (see section 4.7). If the transition frequency is known
with an uncertainty that is much lower than the sideband spacing, the sideband orders
si and so can be determined. Then the carrier frequency is calculated by subtracting
siωi + soωo from the measured line position. In practice the excitation spectrum will be
even more complex than is shown in Figure 3.9. Since we excite the transition with a
frequency comb, the spectrum repeats every ωrep/2. In the weak axial confinement case,
the repetition rate can be set to a multiple of the frequency ωi of the dominant in-phase
mode. The frequency comb excitation will then drive multiple sideband simultaneously,
and no “new” sidebands are created in the spectrum [95]. However, sympathetic cooling
becomes inefficient if the ion motion is only weakly coupled [105]. In the case of strong
axial confinement, the more dense and irregular sideband spacing could make it challenging
to identify the correct sideband. One possible solution would be to bring the ions close
together for cooling, and then to separate them during the excitation of the He+ ion [104].
This could for example be achieved by changing the endcap electrode voltage of the linear
Paul trap. One additional benefit is that the probability of accidentally ionizing the Be+

ion with the XUV spectroscopy radiation is reduced for larger ion spacing.
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Axial anticollinear excitation

Large mixed ion crystals, like the one shown in Figure 3.7 (b), typically contain at least
a few hundred ions and therefore have hundreds or even thousands of normal modes.
Motional sidebands can occur at sums and differences of integer multiples of all mode
frequencies. The sideband spectrum is therefore extremely dense and merges into a con-
tinuum. Achieving Doppler-free spectral lines in large ion crystals consequently requires
working in the Lamb-Dicke regime where the carrier dominates the spectrum [106]. As we
will show, this can be achieved by anticollinear excitation of the 1S-2S transition in the
He+ ions.

In the following we assume that the laser beams are aligned along the z axis of the
trap. We introduce the operator for the z coordinate of the jth ion ẑj = r̂j · ez, and
z

(0)
j = r(0)

j · ez. We assume that this is the He+ ion for which we want to determine the
excitation dynamics. The Rabi frequency for exciting a two-photon transition with counter-
propagating Gaussian pulse trains was derived in the previous section. From Equation 3.42,
Equation 3.43, and Equation 3.45 we obtain

Ω̂2p = 2(2πβge)
√

2π τ
T

∑
m

e− 1
2 (mωrepτ)2

[
I1e

i2ωcẑj/c + I2e
−i2ωcẑj/c

+
√
I1I2

(
ei2mωrepẑj/c + e−i2mωrepẑj/c

) ]
, (3.88)

where we have replaced the coordinate x with the operator ẑj. The first two terms inside the
square brackets in Equation 3.88 contain kick operators with effective wave vectors ±2ωc/c
and correspond to collinear excitation. The third term describes anticollinear excitation
driven by the mth comb mode of one pulse train and the −mth comb mode of the other
pulse train. Here, the effective wave vector is given by the wave vector difference between
the comb modes ±2mωrep/c.

If the ion crystal is initially in an energy eigenstate |{nα}⟩, the carrier Rabi frequency
is given by

⟨{nα}|Ω̂2p|{nα}⟩. (3.89)
However, it is usually not possible to prepare a large ion crystal in such a state. This is
because the dense sideband spectrum precludes the use of resolved sideband techniques
that are employed for cooling single ions or small ion crystals below the Doppler limit [45].
The ion motion is therefore thermal, and a probabilistic description of the motional states
has to be used. The probability of finding the mode α with a motional quantum number
nα is given by [100]

P (nα) = (n̄α)nα

(n̄α + 1)nα+1 . (3.90)

The mean motional quantum number n̄α is [97]

n̄α =
(
eℏωα/(kBT ) − 1

)−1
, (3.91)

where T is the ion temperature, and kB is the Boltzmann constant.
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In the probabilistic description, the He+ ion is no longer in a well-defined motional
state. The time evolution of its internal state can therefore also not be given directly.
Instead, only statistical averages over the thermal distribution can be calculated. How this
averaging has to be performed, depends on the relative time scale of the motional dynamics
and the excitation dynamics of the He+ ion. If the motional state of the He+ ion fluctuates
much more rapidly than the time scale of its excitation dynamics, the excitation can be
described by a “mean Rabi frequency” that is obtained by averaging over the thermal
distribution. In the other limit, when the excitation dynamics are much faster than the
motional dynamics, the ion is in a well-defined motional state for each excitation event.
In this case, the result of the excitation process, for example the scattering or ionization
probability, has to be averaged over the thermal distribution (see chapter 3.8 in [107] for
a more formal treatment of this problem in the context of Mößbauer spectroscopy). The
excitation dynamics of a driven He+ ion are governed by the two-photon Rabi frequency,
the excited state decay rate, and the 2S ionization rate. For the envisioned experimental
parameters, these give a ms time scale. The motional time scale is determined by the
relaxation time which quantifies how quickly a motionally excited He+ ion distributes its
kinetic energy to the other ions in the crystal [107, p. 87]. Using our molecular dynamics
simulations (see section 5.5), we have determined that this happens on a time scale of a
few µs under our envisioned experimental conditions. We are therefore in the first regime
such that the excitation dynamics can be described by averaging Equation 3.89 over the
thermal distribution.

Equation 3.89 contains terms of the form

⟨{nα}|eikeff ẑj |{nα}⟩, (3.92)

where keff = {±2ωc/c,±2mωrep/c}. Averaging these terms over the thermal distribution
in each mode gives [100]:

⟨{nα}|eikeff ẑj |{nα}⟩ = eikeffz
(0)
j

3N∏
α=1

 ∞∑
nα=0

P (nα)⟨nα|eiηα
j (âα+â†

α)|nα⟩


= eikeffz

(0)
j

3N∏
α=1

 ∞∑
nα=0

(n̄α)nα

(n̄α + 1)nα+1 e
−(ηα

j )2/2L0
nα

(
(ηα

j )2
)

= eikeffz
(0)
j

3N∏
α=1

e−(ηα
j )2(n̄α+ 1

2 ). (3.93)

In the last step we have used the Laguerre polynomial sum identity [100]

∞∑
n=0

znL0
n(x) = e− zx

1−z

1 − z
, (3.94)

where x = (ηα
j )2 and z = n̄α/(n̄α + 1).
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We now insert Equation 3.79 into Equation 3.93 and obtain:

⟨{nα}|eikeff ẑj |{nα}⟩ = eikeffz
(0)
j

3N∏
α=1

e−(keffβα′
2N+j)2(n̄α+ 1

2 )ℏ/(2mjωα)

= eikeffz
(0)
j

3N∏
α=1

e− 1
2 (keffβα′

2N+j)2⟨π̂2
α⟩/mj , (3.95)

where we have used that the mean square of the normal coordinate πα is given by [97]

⟨π̂2
α⟩ = ℏ

ωα

(
n̄α + 1

2

)
. (3.96)

Using Equation 3.73, the root mean square fluctuation zrms
j of the coordinate zj around

its equilibrium position z
(0)
j can be expressed in terms of the mean squares of the normal

coordinates:
(zrms

j )2 ≡ ⟨(ẑj − z
(0)
j )2⟩ = 1

mj

3N∑
α=1

3N∑
γ=1

⟨βα
2N+jβ

γ
2N+jπ̂απ̂γ⟩

= 1
mj

3N∑
α=1

(βα
2N+j)2⟨π̂2

α⟩, (3.97)

where we have used that the normal coordinates are uncorrelated. By inserting Equa-
tion 3.97 into Equation 3.95, we obtain:

⟨{nα}|eikeff ẑj |{nα}⟩ = eikeffz
(0)
j e− 1

2 (keffzrms
j )2

. (3.98)

The exponential reduction of the carrier due thermal motion of atoms is well known in
the fields of X-ray diffraction and Mößbauer spectroscopy where the term is called the
Debye-Waller factor [107, p. 45].

In the classical regime where the amplitude of ion motion is much larger than the size
of the ground state wave functions of the ions, zrms

j can be determined from molecular
dynamics simulations. We obtain simulated ion trajectories for a mixed Be+/He+ ion
crystal at different temperatures as described in section 5.5. The resulting root mean
square motions of the He+ ions along the trap axis are shown in Figure 3.10. Typical
amplitudes at temperatures of a few mK are several hundred nm.

Using Equation 3.98 we can now write down an expression for the mean carrier Rabi
frequency:

⟨{nα}|Ω̂2p|{nα}⟩ = 2(2πβge)
√

2π τ
T

∑
m

e− 1
2 (mωrepτ)2

[
e− 1

2 (2ωczrms
j /c)2

(
I1e

i2ωcz
(0)
j /c + I2e

−i2ωcz
(0)
j /c

)
+
√
I1I2e

− 1
2 (2mωrepzrms

j /c)2
(
ei2mωrepz

(0)
j /c + e−i2mωrepz

(0)
j /c

) ]
. (3.99)
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Figure 3.10: Ion position fluctuations obtained from a molecular dynamics simulation.
The motion of an ion crystal containing 50 He+ ions and 1450 Be+ ions (see Figure 2.10)
was simulated for 5 ms at different temperatures. Each line corresponds to the root mean
square fluctuation of the z coordinate of one He+ ion in the chain. The ions near the ends
of the chain are surrounded by fewer Be+ ions and move significantly less than the ones in
the center of the chain.

As in the previous section, we replace the sum over the frequency comb modes with an
integral using ∑m ≈ 1

ωrep

∫∞
−∞ d(mωrep). After evaluating the integral, we obtain the final

result:

⟨{nα}|Ω̂2p|{nα}⟩ ≈ 2(2πβge)
[
e− 1

2 (2ωczrms
j /c)2

(
I1e

i2ωcz
(0)
j /c + I2e

−i2ωcz
(0)
j /c

)
+ 2

√
I1I2

cτ√
(2zrms

j )2 + (cτ)2
e−2(z(0)

j )2/[(2zrms
j )2+(cτ)2]

]
. (3.100)

The first term inside the square brackets gives the contribution to the Rabi frequency due to
collinear excitation. The effective wave vector for this process is keff = 2ωc/c = 2π/30.4 nm.
Typical motion amplitudes of a few hundred nm are much larger than 1/keff . Collinear
excitation of the carrier is therefore strongly suppressed by the Debye-Waller factor.

The anticollinear excitation process has not just one effective wave vector, but a range
of values that are given by the wave vector differences of the contributing comb modes.
The reduction of the carrier Rabi frequency therefore takes a different form and is given
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by the term
cτ√

(2zrms
j )2 + (cτ)2

e−2(z(0)
j )2/[(2zrms

j )2+(cτ)2], (3.101)

which also contains the exponential drop of the Rabi frequency if the ion is located outside
the pulse collision volume (|z(0)

j | > cτ).
The pulse duration τ is connected to the intensity FWHM of the frequency comb

spectrum ∆ω1/2 by

τ =
2
√

2 ln(2)
∆ω1/2

. (3.102)

Figure 3.11 shows Equation 3.101 evaluated for an ion in the center of the pulse collision
volume (z(0)

j = 0). Typical motional amplitudes of few hundred nm correspond to a
reduction of the carrier Rabi frequency by around 10 %.
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Figure 3.11: Reduction of the carrier Rabi frequency due to ion position fluctuations for
anticollinear excitation. The ion is located in the center of the pulse collision volume, and
an intensity FWHM of the frequency comb spectrum of ∆ω1/2 = 2π × 32 THz is assumed.

Conclusion

In conclusion, we expect that both radial collinear excitation and axial anticollinear exci-
tation are viable in our experiment. On the other hand, for axial collinear excitation in
a large ion crystal, the carrier is completely suppressed by the Debye-Waller factor. For
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example, even relatively small rms position fluctuations of 300 nm lead to a Debye-Waller
factor of exp(−2000).

One drawback of collinear radial excitation is the complicated sideband spectrum that
has to be accounted for as described above. However, the configuration would allow detect-
ing the He+ 1S-2S excitation with a scheme similar to quantum logic spectroscopy [104].
The first step is to cool at least one mode of the mixed ion crystal to the ground state
using Raman sideband cooling on the Be+ ion. In the ground state, the red (sα < 0)
sidebands vanish since there are no lower lying states. If the He+ ion is excited on a
motional sideband, the motional state of the ion crystal changes. This can then be de-
tected by performing spectroscopy on the red sidebands in the Raman spectrum of the
Be+ ion [108]. In comparison to detecting He2+ created by resonant three-photon ioniza-
tion, this detection scheme has the advantage that it is nondestructive if the laser intensity
is low enough such that ionization is avoided. It could therefore allow for much faster
experimental cycles since the ion does not have to be reloaded after each excitation. How-
ever, Raman sideband cooling requires significant additional experimental effort compared
to Doppler cooling. Furthermore, the limited fidelity of the motional state measurement
leads to a background which could obscure a very weak excitation signal. Alternatively,
the ionization of He+ to He2+ could be easily detected by a position shift of the Be+ ion.

Anticollinear axial excitation has the advantage that the motional spectrum consists
only of the carrier resonance. Another advantage is that having many Be+ ions makes the
scheme somewhat more robust against accidentally losing some of them due to ionization
or collisions with background gas. As we will show in chapter 5, the production of He2+

ions can be detected also in large ion crystals with single-particle sensitivity. We therefore
believe that this scheme is well suited for a first observation of the transition and have
decided to implement it in our setup.
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Chapter 4

Ion trap setup

This chapter provides a detailed description of the ion trap setup we built for the He+

spectroscopy experiment.

4.1 Ion trap

4.1.1 Trap electrodes

DC lower

DC upper

RF

RF

Compensation

Endcap

3 mm

29 mm

0.9 mm

x y

z

Figure 4.1: Geometry of the ion trap. The trap axis is in z direction. Radial confinement
is provided by four blade electrodes. An RF voltage is applied to one diagonal pair, while
the other two electrodes are held at DC voltages. Two endcap electrodes are used for the
axial confinement. For clarity, only one of the endcaps is shown. Holes are drilled through
the endcaps in order to allow for optical access along the trap axis. The compensation
electrode can be used to compensate for field asymmetries due to stray electric fields and
electrode misalignment.

Figure 4.1 shows the geometry of our ion trap. It consists of four blade electrodes
with an axial length of 3.00 mm. The electrodes have cylindrical tips with a radius R =
0.225 mm, and their surfaces have a distance of r0 = 0.45 mm from the trap axis. This
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relatively small size was chosen such that a sufficiently large Mathieu q parameter can be
achieved with a moderate RF voltage. The ratio R/r0 = 0.5 is smaller than the “ideal”
value of 1.146 for which the 12-pole term of the potential vanishes (see subsection 2.1.3).
This value was chosen since smaller tip diameters increase the gap between the electrodes
which allows for more convenient optical access to the stored ions.

A radio frequency signal is applied to one diagonal pair of blade electrodes in order to
generate the radial confinement. We call these the RF electrodes. The other pair consists of
the two DC electrodes which are held at constant voltages. Axial confinement is provided
by a pair of endcap electrodes that are held at a positive high voltage. Their surfaces are
located 3.50 mm from the trap center. In order to allow axial optical access to the ions,
holes with 0.5 mm diameter are drilled through the endcaps. An additional compensation
electrode is located between two of the blade electrodes. By adjusting the voltages of the
DC electrodes and the compensation electrode, unwanted electric fields in the trap center
can be compensated. Here, the relatively large gap between the blade electrodes helps to
make the compensation electrode more effective.

During trap operation, the trapping volume is illuminated with ultraviolet laser beams
for beryllium ionization, Be+ laser cooling, and He+ spectroscopy. Furthermore, an electron
gun is used to produce He+ ions. It is therefore difficult to avoid charge buildup on any
electrical insulators in the trap structure. If insulators are located close to the ions, the
resulting patch potentials can lead to large electric fields that displace the ions from the
trap center. The trap electrodes are therefore machined from molybdenum which does not
oxidize at ordinary temperatures and has a low and uniform surface potential [109, p. 356].
The electrodes are held by insulating spacers that are manufactured from a machinable
ceramic.1

4.1.2 Trap potential
We use a commercial finite element analysis software2 to simulate the electric potential
created by the trap electrode structure shown in Figure 4.1. The software can directly
import the trap geometry from the computer-aided design (CAD) files that were used to
machine the electrodes. The simulated geometry consists of the blade electrodes, endcap
electrodes, and compensation electrode. Small unimportant features, such as screw holes,
were removed to reduce the computation times. The software divides up space into a three-
dimensional mesh and numerically solves Laplace’s equation for given voltages applied to
the electrodes.

Radial potential

To analyze the radial confinement, a voltage of 1 V is applied to the RF electrodes while
all other electrodes are grounded. Figure 4.2 shows cuts through the resulting potential
on connection lines between the opposing surfaces of the two RF electrodes.

1Corning MACOR.
2COMSOL Multiphysics.
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Figure 4.2: Simulated trap potential on connection lines between opposing RF electrode
surfaces at different axial positions. The solid blue lines are the results of the simulation,
and the dashed orange lines are polynomial fits according to Equation 2.22.

As discussed in subsection 2.1.3, the potential contains terms beyond the quadrupole
term since the electrodes do not have the ideal hyperbolic shape. In order to quantify
the higher-order contributions, we fit the simulated potential with the multipole expansion
given in Equation 2.22 up to the (r/r0)14 term. Typical large ion crystals in our setup have
axial lengths of a few hundred µm and radial diameters of less than 200 µm (see Figure 2.8).
It is evident from Figure 4.2 that the potential does not change very much for an axial
distance of up to ±0.5 mm from the trap center. From the fit we obtain an effective trap
size of reff = 0.468 mm in the center and reff = 0.469 mm at z = 0.5 mm. The total
contribution of anharmonic terms up to (r/r0)14 is less than 0.1 % of the quadrupole term
for r < 100 µm. In the radial direction we therefore do not expect significant deviations
from the dynamics of an ideal Paul trap.

Axial potential

The static axial potential is simulated by applying 1 V to the endcap electrodes and ground-
ing the other ones. Figure 4.3 shows the resulting potential along the trap axis. We can
see that the blade electrodes surrounding the trapping region lead to a strong shielding of
the potential produced by the endcap electrodes.

We fit the potential in the range of |z| ≤ 0.5 mm with an even polynomial up to fourth
order:

φax(z) = Uec

2

[
κ
(
z

z0

)2
+ C4

(
z

z0

)4
]

+ U0, (4.1)
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Figure 4.3: Simulated axial trap potential due to the endcap electrodes along the trap axis.
The left plot shows the potential along the entire length of the blade electrodes, while the
right plot is limited to ±0.5 mm around the trap center. The solid blue lines are the results
of the simulation, and the dashed orange line is a fit of Equation 4.1.

where Uec = 1 V is the voltage applied to the endcaps, U0 is the potential in the trap
center, z0 = 3.5 mm is the distance between the endcap electrodes and the trap center, κ
is the geometrical factor defined in Equation 2.24, and C4 is the coefficient of the cubic
component of the potential. We obtain a geometrical factor of κ = 0.073. At a distance of
0.5 mm from the trap center, the cubic term contributes 31% to the total potential.

4.1.3 RF resonator

Paul traps for atomic and molecular ions are typically driven with radio frequencies of a
few tens of MHz such that secular frequencies in the MHz range can be achieved. The trap
electrodes constitute an almost entirely capacitive load which is badly matched to the 50 Ω
characteristic impedance of RF sources and amplifiers. If an ion trap is directly connected
to an RF source, a complex voltage divider is formed between the output impedance of the
source and the reactance of the trap. This means that the voltage across the trap electrodes
can be at most twice the voltage that the source delivers into a 50 Ω load. Typical RF
amplitudes required for driving Paul traps are above 100 V. Very high RF powers would be
required in order to reach such amplitudes directly from an RF amplifier. A more efficient
technique is to use a resonant transformer for matching the 50 Ω source impedance to the
capacitive ion trap. Another benefit of using a resonant circuit is that due to the limited
bandwidth, electrical noise is filtered out that could otherwise heat up the motion of the
ions.
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Helical resonators

In our frequency range helical resonators [110–112] with dimensions of a few cm are well
suited for this task. Figure 4.4 shows a schematic of such a resonator. It consists of a large
helical main coil that is housed in a cylindrical shield. The inductance of the main coil
and the resistance and capacitance of the resonator and the attached trap electrodes form
a resonant RLC circuit. The signal is inductively coupled in through a smaller antenna
coil that is placed close to the main coil. The design of our helical resonators is described
in detail in [113], and we only summarize the main results here.

Shield

Main
coil

RF
Ground

To trap RF
electrodes

RF input Antenna
coil

Clamping
screw

Figure 4.4: Schematic of a helical resonator. A resonant RLC circuit is formed by the
inductance of the main coil and the overall capacitance and resistance of the resonator
and the attached ion trap. The RF signal is coupled in through the antenna coil which is
mounted to the lid that closes the resonator body. The coupling between the coils can be
adjusted by sliding the lid up or down. It is then clamped in place with a screw.

Figure 4.5 shows the equivalent circuit that we use to describe the system. The RF
source consists of a signal generator3 and an amplifier4 with a characteristic impedance of
Z0 = 50 Ω. The helical resonator is modelled as the main coil with inductance Lc that
is inductively coupled to the antenna coil with inductance La. The main coil and the
cylindrical shield have resistances Rc and Rs, respectively. The overall parallel capacitance
of the resonator is Ch. The ion trap consists of a capacitance Ct and a series resistance
Rt. Typically, the resistance of the trap Rt is much smaller than its reactance 1/(ωCt),
where ω is the frequency at which the circuit operates. In this case the resistances and
capacitances of the helical resonator and the ion trap can be lumped together as shown
in the bottom of Figure 4.5. Here, C = Ch + Ct is the combined capacitance of the trap

3Rohde & Schwarz SMC100A.
4Mini-Circuits ZHL-20W-13.
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and the helical resonator, and RESR = Rc +Rs +Rt[Ct/(Ch +Ct)]2 is the equivalent series
resistance of the circuit.

RF source Helical resonator Ion trap

Figure 4.5: Equivalent circuit of the ion trap RF supply (top) and simplified version
(bottom). The symbols are explained in the main text.

The power dissipated in RESR is maximal when the circuit is impedance matched to the
RF source. Since RESR and C are connected in series, this condition also maximizes the
voltage drop across the ion trap. Impedance matching means that the effective impedance
Zeff of the helical resonator and ion trap is equal to the characteristic impedance Z0 of the
RF source. In practice this matching is achieved by adjusting the distance between the
antenna coil and the main coil until the back-reflected RF power is minimized. From this
condition the resonance frequency of the circuit can be calculated:

ω0 = 1√
LcC − RESR

Z0
LaC

, (4.2)

and the resulting voltage enhancement of the resonator is

η = Uout

Uin
= 1
ω0C

√
Z0RESR

, (4.3)

where Uin is the voltage amplitude produced by the RF source, and Uout is the voltage
amplitude across the trap electrodes.
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Resonator design

If the circuit parameters are known, Equation 4.2 can be used to calculate the expected
resonance frequency of the helical resonator. The capacitance of an ion trap can be directly
measured with an LCR meter. We used a network analyzer5 that has an impedance analysis
function and obtained Ct = 16 pF for our trap. Empirical expressions for the inductance
Lc and capacitance Ch of a helical resonator are [110]

Lc = 39.37 b 0.025 d2[1 − (d/D)2]
τ 2 × 10−6 H/m, (4.4)

Ch = 39.37 b 0.75
log10(D/d)

× 10−12 F/m, (4.5)

where b is the height of the main coil, τ is its winding pitch, d is its diameter, and D is
the inner diameter of the cylindrical shield.

The resistances Rc, Rs, and Rt are more difficult to estimate. However, since typically
RESR ≪ Z0 and La ≲ Lc, we can neglect the second term under the square root in
Equation 4.2 and get

ω0 ≈ 1√
Lc(Ch + Ct)

. (4.6)

We chose an inner shield diameter of D = 7.6 cm and a main coil with diameter d = 3 cm,
height b = 5 cm, and winding pitch τ = 11 mm. The calculated inductance and capacitance
are Lc = 309 nH and Ch = 3.66 pF, respectively. This results in an expected resonance
frequency of ω0 = 2π × 65 MHz.

In order to minimize ohmic losses, the main coil is wound from thick copper wire with
5 mm diameter. One end is soldered to the copper shield, while the other end is terminated
with a connector that is used to attach the resonator to the ion trap electrodes. At the
other end the resonator is closed with a copper lid that also holds the antenna coil. The
antenna coil is hand wound from 1 mm wire. We found that 2.5 windings with a diameter
of 2 cm and 5 mm winding pitch work well. The lid can be slid along the shield in order to
optimize the coupling between the two coils. A small amount of lubricant had to be used
to prevent galling of the copper surfaces. Once good impedance matching is achieved, the
lid can be clamped in place with a screw.

Characterization

The helical resonator is characterized by connecting the network analyzer to the antenna
coil and measuring the frequency dependence of the S11 parameter:

S11 = Pref

Pin
= Pin − Pdiss

Pin
, (4.7)

where Pin is the input power, Pref is the reflected power, and Pdiss is the power dissipated
in the circuit.

5Keysight E5061B.
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The resonance is visible as a dip in the S11 value, and the impedance matching is
optimized by maximizing the depth of the dip. As shown in Figure 4.6, a resonance
frequency of 65.3 MHz is achieved which is in very good agreement with the theoretical
calculation. On resonance the S11 parameter reaches almost −30 dB such that essentially
the entire available RF power is coupled into the resonator.
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Figure 4.6: S11 parameter of the impedance matched helical resonator showing a strong
resonance at 65.3 MHz.

The network analyzer can also be used to determine the equivalent series resistance
RESR of the circuit. The equations describing an RLC circuit are of the same form as those
of a damped harmonic oscillator. This means that the resonance has a Lorentzian shape
whose width is determined by the losses of the system. The Q factor of a resonator is given
by the ratio between the resonance frequency and bandwidth:

Q = ω0

∆ω , (4.8)

where ∆ω is the FWHM bandwidth of the power dissipated in the lossy part of the system.
The Q factor of the circuit shown in Figure 4.5 is quite sensitive to the coupling between
the antenna coil and the main coil since the output impedance Z0 of the RF source damps
the oscillation in addition to RESR [114]. We therefore increased the distance between
the antenna coil and main coil such that La and Lc are only weakly coupled. Under this
condition the influence of Z0 and La on the circuit is small, and the helical resonator and
ion trap can be treated as a series RLC circuit consisting of the effective series resistance
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RESR, the main coil inductance Lc, and the total capacitance C = Ch + Ct. The Q factor
of this circuit is

Q = 1
RESR

√
Lc

Ch + Ct

. (4.9)

From Equation 4.7 we can see that the bandwidth of Pdiss is equivalent to the bandwidth
of 1 − S11. Figure 4.7 shows the measurement result for our resonator. The curve has a
sloped background which we attribute to the frequency dependent loss in the coaxial cable
from the network analyzer to the helical resonator. To extract the resonance width, we
therefore fit the curve with the sum of a linear function and a Lorentzian function. We
obtain an FWHM bandwidth of 379 kHz, corresponding to Q = 172. From Equation 4.9 we
obtain an effective series resistance of RESR = 0.73 Ω. The resulting voltage enhancement
given by Equation 4.3 is η = 21.
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Figure 4.7: Power coupled into the resonator for weak coupling between the antenna coil
and main coil (solid blue line). A fit with the sum of a Lorentzian and a sloped background
(dashed orange line) yields Q = 172.

We later remeasured the Q factor and obtained lower values between 70 and 90. This
corresponds to RESR between 1.4 Ω and 1.8 Ω and voltage enhancements of 13 to 15. We
attribute this to increased contact resistance due to surface oxidization of the bare copper
connectors between the helical resonator and the vacuum feedthrough going to the ion trap.
We typically operate the RF amplifier well below its rated power. The decrease in voltage
enhancement can therefore be easily compensated by increasing the input RF power. If
higher Q factors are required, connectors plated with a corrosion resistant material such
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as silver or gold could be used.

4.1.4 Electrode connections
Figures 4.8 and 4.9 show the electrical connections of the trap electrodes. The endcap
electrodes are connected to two independent channels of a high voltage power supply6

that can output up to 2 kV. The DC electrodes are connected to analog outputs of a
multifunction I/O card7 which have a range of ±10 V. Since the compensation electrode
is placed further away from the ions than the DC electrodes, it requires a higher voltage
to be effective. A bipolar high voltage amplifier8 is therefore used to increase the range of
the I/O card to ±200 V.

RF

RFDC

DC

Uec,left

50 Ω

0.22 µF

1 MΩ

Bias tee

33 nF

33 nF

x

z

y

Figure 4.8: Electrical connections of the endcap electrodes and RF electrodes. The RF
electrodes are driven by the helical resonator which is not shown here. The circuit for
the right endcap is identical to the one for the left endcap. The secular excitation voltage
Uex,ax(t) is only applied to one of the endcaps.

Due to their close proximity, the other trap electrodes are capacitively coupled to the
RF electrodes. To reduce the resulting RF pickup, the electrodes are shorted to ground
at high frequencies using capacitors. We use 1 nF for the DC electrodes and compensation
electrode, and 33 nF for the endcap electrodes. The capacitors are soldered to a small circuit
board that is located as close as possible to the air side of the vacuum feedthrough used
for the electrode connections. This minimizes the cable inductance between the electrodes
and capacitors. A too large inductance would lead to a large impedance at high frequency
which makes the capacitors ineffective at providing an RF ground path.

6iseg NHR 40 20r_SHV.
7National Instruments USB-6229.
8Thorlabs HVA200.
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Figure 4.9: Electrical connections of the DC electrodes and compensation electrode. The
circuit for the lower DC electrode is identical to the one for the upper DC electrode.

In order to measure the secular frequencies of the trapped ions (see section 4.7 and
section 5.3), we have to apply additional oscillating electric fields to excite the motion of the
ions. The endcap electrodes and compensation electrode are therefore equipped with bias
tees that allow adding the excitation voltages Uex,ax(t) and Uex,rad(t) to the DC voltages.
Since the high voltage amplifier for the compensation electrode turned out to be sensitive
to RF pickup, we added a 100 µH inductor for protection. The 10 MW resistor at the output
of the bias tee circuit discharges the capacitor when the amplifier is disconnected.

Noise on the trap voltages creates fluctuating forces on the ions which heat their motion.
The trap electrodes are therefore equipped with low-pass filters. The DC electrodes are
particularly sensitive since they are closest to the ions. Their voltages are filtered with a
100 kW resistor and a 47 nF capacitor which results in a cutoff frequency of 34 Hz. The
filtering for the endcap voltages is provided by the 1 MW current limiting resistor built into
the bias tee and a 33 nF capacitor. For exciting radial secular resonances, frequencies of up
to several MHz have to be applied to the compensation electrode. We therefore added no
additional filtering beyond the one provided by the 1 nF capacitor, the inductor contained
in the bias tee, and the output impedance of the high voltage amplifier.

4.1.5 Magnetic field coils
As described in section 2.5, Be+ can be efficiently laser cooled by driving a cycling tran-
sition between stretched states using circularly polarized light. This requires that the
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magnetic field is aligned parallel with the cooling laser beam. Our setup contains three
perpendicular pairs of coils that allow full adjustment of the magnetic field vector. The
coils have 100 windings and are located just outside the vacuum chamber that houses the
ion trap. Currents of a few hundred mA are sufficient to overcome the background due to
the earth’s magnetic field and stray fields from the ion pumps and vacuum gauges. The
coil currents are adjusted by maximizing the fluorescence from the laser cooled ions while
the repumper is turned off.

4.2 Fluorescence detection
In all ion trap experiments described in this thesis, the detected signal is the fluorescence
emitted by the trapped Be+ ions. Our setup contains two imaging systems that allow the
observation of the trapped ions from the horizontal and vertical direction.

4.2.1 Objectives
Objectives for imaging trapped ions can either be placed inside the vacuum chamber, or the
ions can be imaged from the outside through a vacuum window. In-vacuum optics has the
advantage that the distance between the objective and the ions can be made much shorter.
This means that the desired numerical aperture can be reached with much smaller optical
elements than when the objective is located outside the vacuum chamber. However, there
are also a number of drawbacks. The insulating surface of the first lens can get electrically
charged due to exposure to electrons from the electron gun and ultraviolet light from the
ionization and cooling lasers. This leads to stray fields at the position of the ions which
can interfere with the operation of the trap. Another issue is that the objective can only
contain vacuum compatible materials and has to withstand the bake out temperatures of
around 200 ◦C that are required to achieve ultra-high vacuum.

We therefore decided to use objectives placed outside the vacuum chamber as shown in
Figure 4.10. The windows used for imaging are made from fused silica. Horizontal imaging
is performed through a 6.35 mm thick “re-entrant” window whose vacuum side is located
69.5 mm from the center of the ion trap. The top window of the trap vacuum chamber is
9.5 mm thick and its vacuum side is located 64.5 mm from the center of the ion trap.

Objective design

Our application requires a long working distance and operation at 313 nm which lies in
the ultraviolet. These relatively unusual requirements make it difficult to find suitable
commercial standard objectives. Furthermore, the vacuum window between the ions and
the objective introduces spherical aberrations [115] that would degrade the performance of
the imaging system if not taken into account in the design. A relatively simple and cost
effective way of constructing custom imaging objectives is to combine a number of catalog
singlet lenses. The basic design procedure is the following [116, 117]. First, an existing
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Horizontal objective

Vertical objective
Re-entrant window

Figure 4.10: Overview of the ion imaging objectives. The re-entrant window allows plac-
ing the horizontal objective closer to the ion trap than a flat window would allow. For
simplicity, components other than the ion trap are not shown.

objective design is used a starting point. Ray tracing software is then used to numerically
optimize the performance of the objective by adjusting the radii of curvature of the lens
surfaces and the spacings between the surfaces. The lenses are then successively replaced
with the closest available catalog parts. At each step the remaining free lens parameters
and the spacings between the lenses are re-optimized.

One important parameter is the magnification of the imaging system. It should be
large enough to ensure that the pixel size of the camera sensor is not limiting the imaging
resolution. At the same time, a too large magnification would limit the field of view. Our
cameras have sensor sizes of 8 × 8 mm2 and pixel sizes of 8 × 8 µm2. We therefore chose a
target magnification of M ≈ −8 in order to achieve a field of view of around 1 × 1 mm2.
This allows fitting even large ion crystals with a few hundred µm axial length into the
frame. The resulting digital resolution due to the finite pixel size is 1 × 1 µm2. This is
smaller than the optical resolution of the imaging system and is therefore not limiting the
image quality.

We decided to use fused silica lenses with 50.8 mm diameter and employed a commercial
ray tracing software9 for the numerical optimization. Ray tracers simulate the propagation
of light rays through a lens system using the law of refraction. In an ideal aberration-free
imaging system, all rays originating from a point in the object plane converge in a single

9Qioptiq WinLens3D.
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point in the image plane. At the same time it follows from Fermat’s principle that the
optical path lengths of all the rays are identical [115]. WinLens3D traces bundles of rays
from points in the object plane to the image plane such that the entire entrance pupil of
the objective is covered. We chose one object point on the optical axis and one 0.5 mm
off-axis such that both the center and the edge of the field of view are covered. One
popular visualization of the resulting ray data consists of spot diagrams that are shown
in Figure 4.11. They show the coordinates at which the rays intersect the image plane
relative to the aberration-free image position. The deviations from the center are called
transverse ray aberrations.

−10 0 10

−10

−5

0

5

10

V
er

ti
ca

l
im

ag
e

ax
is

(µ
m

)

−10 0 10

Horizontal image axis (µm)

Figure 4.11: Spot diagrams of the horizontal objective simulated by the ray tracing soft-
ware. The plots show how much rays originating from a single reference point in the object
plane spread out in the image plane due to aberrations. In the left plot the reference point
is on the axis of the objective, and in the right plot it is 0.5 mm from the axis. The red
circles indicate the sizes of the Airy disks. This is a common measure for the spot size of
a diffraction-limited imaging system [115].

Another visualization consists of optical path difference (OPD) plots which are shown
in Figure 4.12. Here, the path differences between the rays and a reference ray that crosses
the center of the input aperture of the imaging system are plotted. For off-axis object
points, ray fans are aligned along the meridional and sagittal planes (see for example
section 10.2.4 in [115]).

For the numerical optimization, WinLens3D calculates a merit function as the quadratic
sum of a user-defined set of aberration parameters. Another term ensures that the overall
magnification of the imaging system remains close to the design value. The merit function
also contains additional terms that penalize designs that are difficult to manufacture, for
example due to the lenses becoming too thin at the edges. WinLens3D then uses a damped
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Figure 4.12: Optical path difference (OPD) plots for the horizontal objective. The path
differences are measured relative to a reference ray that crosses the center of the input
aperture of the imaging system. The rays originate on-axis (blue) and 0.5 mm off-axis
(orange). The aperture fraction measures how far from the center the rays cross the input
aperture. A value of 1 corresponds to marginal rays that hit the edge of the aperture.

least squares method to minimize the merit function by adjusting the parameters of the
imaging system. We found that good results could be achieved by minimizing the transverse
ray aberrations, i.e. the spread of the points in Figure 4.11. After some trial and error
we found a suitable design for the horizontal imaging system that combines four catalog
lenses as shown in Figure 4.13.

In the absence of aberrations, the achievable resolution of an imaging system is limited
by diffraction from the aperture. For a circular aperture the intensity in the image plane
follows the Airy distribution [115]:

I(r) ∝

2J1
(

2π
λ

ar
R

)
2π
λ

ar
R

2

, (4.10)

where Jα(x) are the Bessel functions of the first kind, r is the distance from the spot center
in the image plane, λ is the wavelength, R is the distance between the aperture and the
image plane, and a is the radius of the aperture. The Airy distribution has its first zero at

r0 ≈ 0.61Rλ
a
, (4.11)

which defines the radius of the Airy disk.
An objective design is considered “diffraction limited” if the spot diagrams obtained

by ray tracing are much smaller than the sizes of the Airy disks (red circles in Fig-
ure 4.11) [115]. Another common criterion for a diffraction limited imaging system is
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Figure 4.13: Schematic of the objective designed from catalog lenses. The gray dashed line
shows the input aperture. The surfaces are numbered and their curvatures and spacings
are given in Tables A.1 and A.2 for the two variants of the objective.

that the optical path differences are less than one quarter of the wavelength [118]. Accord-
ing to both criteria our design is on the edge of being diffraction limited. The aberrations
of an imaging system can be reduced by stopping down the aperture size. This is because a
smaller aperture reduces the largest angle at which rays can strike the lens surfaces. How-
ever, it comes at the cost that a smaller aperture increases the spot size due to diffraction
and reduces the light gathering ability of the objective. For our application we decided
that maximizing the light gathering ability is more important than achieving a slightly
higher resolution by stopping down the lens. The aperture diameter was therefore chosen
such that the marginal rays pass just through the specified clear apertures of the lenses.
The resulting numerical aperture of the objective is NA = sin(θ) = 0.23, where 2θ is the
apex angle of the cone of light that can enter the aperture. The solid angle covered by the
cone is

Ω = 4π sin2(θ/2) = 2π
(

1 −
√

1 − (NA)2
)
. (4.12)

The objective can therefore gather Ω/4π = 1.3 % of the light emitted by an isotropic source.
The horizontal and vertical imaging systems only differ in the position and thickness

of the vacuum window. We found that this difference could be compensated by changing
only the spacings between the objective lenses. The resulting spot diagrams and optical
path difference plots are qualitatively similar to those of the horizontal objective. The ray
tracing results and surface data are given in Appendix A.

A schematic of the mechanical design of the objectives is shown in Figure 4.13. The
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lenses are placed in a brass tube, and spacer rings are used to precisely locate them at the
design positions. The stack of lenses and spacer rings is held together by a rubber O-ring
and a cap that is screwed into the lens tube.

Objective performance

The assembled horizontal objective was first tested outside the ion trap setup. As a stand-
in for the vacuum window, a fused silica flat of the same thickness was used. We used a
1 µm pinhole as a test object that was illuminated by a 313 nm laser beam. The pinhole
was placed on a 3-axis stage which allowed moving it through the field of view of the
imaging system. Figure 4.14 shows the image of the pinhole at different positions in the
field of view. Fitting a 2D Gaussian to the center image yields a slightly elliptical spot with
1/e2 waist diameters of 21 µm and 17 µm which is in rough agreement with the simulated
spot diagrams. At the edges of the field of view, the spots show aberrations that are
not symmetric with respect to the center of the image. We believe that this is due to
manufacturing imperfections of the lenses, the lens tube, and the spacer rings. These lead
to a slight asymmetry of the assembled objective. Nonetheless, an imaging resolution of
less than a few µm is achieved across the field of view which is sufficient for resolving the
individual ions in a Coulomb crystal.

Figure 4.14: Image of a 1 µm pinhole in the center of the field of view, and shifted by
around ±0.4 mm along the horizontal and vertical axes.

4.2.2 Detectors
The requirements for the detectors that record the fluorescence emitted by the Be+ ions
vary by application. For example, taking pictures of ion crystals requires spatially resolved
photon detection, while time resolution is less important. On the other hand, the detection
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of excess micromotion with the photon-correlation method (see subsection 4.7.3) requires
tagging the photon arrival times with ns resolution, while spatial resolution is not required.

We therefore use two different detector types in the fluorescence detection system.
Electron-multiplying CCD (EMCCD) cameras are used for spatially resolved imaging with
low time resolution, while photomultiplier tubes (PMTs) are used to measure photon arrival
times with ns resolution. The detection system is shown in Figure 4.15. The PMTs are
located in light-tight boxes that are attached to the front of the cameras. The boxes contain
movable beam splitters that allow sending half of the light onto the PMTs.

Horizontal
camera

Vertical
camera

Horizontal
PMT assembly

Vertical
PMT assembly

Turning
mirror

Figure 4.15: Detectors used in the imaging system. The cameras are used for spatially
resolved imaging, while the PMTs allow measuring photon arrival times with ns time
resolution.

Cameras

We use two similar EMCCD cameras for the horizontal10 and vertical11 imaging systems.
Both cameras contain identical EMCCD image sensors with a pixel size of 8 × 8 µm2 and a
resolution of 1004×1002 pixels. The sensor quantum efficiency at 313 nm is specified to be
25 %. The sensors of the horizontal and vertical cameras are cooled to −75 ◦C and −85 ◦C,
respectively, using thermoelectric coolers. This reduces the dark currents to below 0.028
and 0.01 e− px−1 s−1, respectively. Since each ion is imaged onto a spot of a few px size and
we use exposure times of a few s at most, these dark counts are essentially negligible in our

10Andor iXon DV885LC-VP.
11Andor iXon DU-885K-CS-0#VP.
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application. When photons strike the pixels of a CCD sensor, they create charges due to
the photoelectric effect. After the exposure time has elapsed, the charges are shifted across
the sensor and are sequentially read out by an amplifier and analog to digital converter.
For our cameras the noise created in this process amounts to around 20 to 30 e− px−1. The
EMCCD sensors suppress the influence of this readout noise by multiplying up the number
of electrons accumulated in a pixel before they reach the readout amplifier. This is achieved
by shifting the charges through a series of special amplification registers that are operated
at a relatively high voltage. With a certain probability this can lead to the creation of
further charges due to impact ionization. Hundreds of these registers are stacked in order
to achieve gains of up to a few thousand. In this regime the readout noise becomes smaller
than the signal due to a single photon. To reject room light, 313 nm band-pass filters12

with 10 nm FWHM bandwidth are mounted directly in front of the image sensors.

Photomultiplier tubes

For time-resolved photon detection, we use integrated photon counting heads13 which con-
tain a PMT, the required high voltage power supply, and pulse detection circuitry. For
each detected photon they output a 10 ns long pulse with 2.2 V amplitude into a 50 Ω load.
The specified quantum efficiency at 313 nm is 29 %. Room light is rejected using the same
filters used for the cameras. Even when the cooling laser beams are well aligned through
the ion trap, some light is being scattered from the trap electrodes which creates back-
ground counts on the PMTs. We therefore spatially filter the light using pinholes that are
placed in the image planes of the objectives directly in front of the PMTs. Different pinhole
diameters can be chosen depending on the application. For experiments with single ions
and large ion crystals, we typically used 100 µm and 1 mm pinholes, respectively.

4.3 Be+ cooling laser

Laser cooling of Be+ requires ultraviolet light at 313.1 nm (see section 2.5). The cooling
laser system is based on a design pioneered in the group of D. Wineland and D. Leibfried
at the NIST14 [119]. It was originally designed and built by V. Batteiger and is described
in detail in his dissertation [120]. In the following, we summarize the main features of
the system and explain the changes made during this thesis work. Figure 4.16 shows a
schematic of the optical setup for generating 313 nm light.

12Edmund Optics #34-977.
13Hamamatsu H10682-210.
14National Institute of Standards and Technology, Boulder, United States.
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Figure 4.16: Setup for generating 313 nm light. DM, dichroic mirror; PBS, polarizing beam
splitter; PD, photodiode. Focal lengths are given in mm.

Sum frequency generation

Fundamental radiation at 1051 nm and 1550 nm is generated by two fiber lasers.15 The
beams are overlapped on a dichroic mirror and focused into a periodically poled lithium
niobate (PPLN) crystal for sum frequency generation. Phase matching is achieved at a
crystal temperature of around 161 ◦C. When operating the fiber lasers at their maximum
output power, more than 2 W of optical power can be generated at 626 nm [120]. This is
significantly more power than we need in the experiment. In order to reduce the stress
on the components, we therefore typically use an input power of 2.79 W at 1051 nm and
1.93 W at 1550 nm. This results in about 500 mW of 626 nm light.

Second harmonic generation

The 626 nm light is then frequency doubled in a β-barium borate (BBO) crystal in a bow-
tie enhancement cavity. The crystal is 8 mm long and is critically phase-matched. In
the original design the cavity was constructed from mirror mounts on optical posts that
were clamped to a breadboard. We found that this made the cavity very sensitive to
mechanical disturbances, for example when someone was walking around in the lab. We
therefore replaced the optomechanics with a construction similar to the one used for the

15Originally we used two Menlo Systems Orange One lasers. After multiple failures of the 1051 nm
system, we replaced it with a new laser (Keopsys CYFL-KILO).
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Be ionization laser (see Figure 4.29). The mirror mounts are directly screwed into a 35 mm
thick machined aluminum plate. With this more rigid construction, the cavity is almost
completely insensitive to typical mechanical disturbances in the lab environment.

In the original setup the optical surfaces had to be cleaned from dust every few days
in order to maintain sufficient enhancement [120]. We therefore sealed the housing of the
cavity and use an air circulator to circulate filtered and dry air through the system. With
these modifications we found that no regular cleaning is required.

The resonator length is stabilized using the Hänsch-Couillaud method [121]. We re-
placed the original analog loop filter with the digital one we developed (see section 4.6.1)
and added a monitor photodiode behind one of the cavity focusing mirrors. The diode is
used to measure the power circulating in the cavity. The digital loop filter uses the signal
to automatically reacquire the lock when necessary. When the system is well aligned, it
generates around 160 mW to 180 mW at 313 nm from 500 mW of input power at 626 nm.

Repumper

As described in section 2.5, imperfections in the cooling laser polarization and in the
alignment of the magnetic field axis lead to pumping of the Be+ ions into the S1/2(F =
1) dark states. We use a resonant electro-optic modulator16 (EOM) to create 1.25 GHz
sidebands on the cooling laser. When the carrier is on resonance with the S1/2(F = 2) →
P3/2(F = 3) cycling transition, the lower sideband drives transitions from the S1/2(F = 1)
manifold to the P3/2 state which re-pumps the ions out of the dark states. The sideband
strength is around 6 % of the carrier which is sufficient for this application. To prevent
drifts of the resonance frequency of the EOM, its temperature is actively stabilized using
the built-in temperature sensor and a Peltier element.

4.3.1 Frequency stabilization
To achieve laser cooling, the laser frequency has to be held at a fixed detuning relative to the
transition frequency of the Be+ ions. For stable operation the frequency fluctuations should
be kept well below the transition linewidth, i.e. in the range of a few MHz. Commercial
Fizeau wavelength meters achieve measurement resolutions below 1 MHz. However, they
are subject to environmental drifts and require frequent recalibration. In our setup we
use such a wavelength meter for coarse frequency determination only. The cooling laser
is stabilized using a frequency offset lock to a self-referenced frequency comb. Figure 4.17
shows a schematic of the frequency stabilization setup.

A half-wave plate and a polarizing beam splitter are used to split off a few mW of
626 nm light after the sum frequency generation. The light is coupled into a polarization
maintaining fiber and is split into two outputs by a fiber beam splitter. 10 % of the
light are sent to a Fizeau wavelength meter.17 An adjustable fiber attenuator is used for
exposure control. The wavelength meter features a fiber switch that can be used to switch

16Qubig PM-Be+_1.3P3.
17HighFinesse WSU-2.
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Figure 4.17: Be+ cooling laser frequency stabilization setup. BS, beam splitter; PM fiber,
polarization maintaining fiber; PCF, photonic crystal fiber; LP filter, low-pass filter; BP
filter, band-pass filter; DG, diffraction grating; PFD, phase-frequency detector. Focal
lengths are given in mm.
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between the signal to be measured and a calibration source. For this we use a stabilized
helium-neon laser.18 We found that back reflections from the fiber coupling disturb the
frequency stabilization of the helium-neon laser and therefore added an optical isolator
directly in front of the laser aperture. Every few minutes, the wavelength meter software
automatically calibrates the device using the calibration source.

The other 90 % of the light are sent through a 100 m long polarization maintaining fiber
to another lab which contains a commercial self-referenced frequency comb.19 The comb
is based on an erbium-doped fiber laser and operates with a central wavelength of around
1560 nm. It contains an internal fiber amplifier and a second harmonic generation stage
that produces 180 mW of output power with a spectrum centered at 780 nm. This light
is then spectrally broadened in a photonic crystal fiber to produce a broadband spectrum
with a specified wavelength range from 600 nm to 973 nm. This light is overlapped with
the light from the cooling laser system on a polarizing beam splitter (PBS). A half-wave
plate and another PBS are used to project the two beams onto the same polarization axis.
To ensure good spatial mode matching, both beams are then coupled into the same single-
mode optical fiber. The fiber output is collimated and sent onto a diffraction grating.
An f = 75 mm lens is placed one focal length behind the grating in order to convert
the angular dispersion produced by the grating into a spatial separation of the different
wavelengths. An adjustable slit placed in the focal plane of the lens is then used to filter
out the wavelength components of the comb light that lie far from the wavelength of the
cooling laser. These components would reduce the signal to noise ratio of the detected
beat note since they do not contribute to the signal, but increase the noise level due to
shot noise and technical amplitude noise on the light (see also subsection 6.3.2). Finally,
the light is focused by an f = 50 mm lens onto an amplified silicon photodetector.20

Figure 4.18 shows the resulting beat note between the cooling laser and the closest
frequency comb mode. The beat note frequency is given by

fbeat = |fcool − fn| , (4.13)

where fcool is the frequency of the cooling laser at 626 nm, and fn is the frequency of the
nth comb mode which is given by the frequency comb equation (see section 3.1):

fn = nfrep + fceo, (4.14)

where frep = 250 MHz is the pulse repetition rate of the frequency comb, and fceo =
−2 × 45 MHz is the carrier-envelope offset frequency.21

A 100 MHz low-pass filter is used to select only the lowest-order beat note from the
electronic signal which is then amplified by an RF amplifier. The signal is sent back to the
He+ experiment using a 100 m long low-loss coaxial cable.22

18Thorlabs HRS015B.
19Menlo Systems FC1500-250-ULN.
20Thorlabs PDA10A-EC.
21The frequency comb is stabilized at a carrier-envelope offset frequency of −45 MHz. The factor 2 is

due to the second harmonic generation in the 780 nm output.
22Type RG-214/U.
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Figure 4.18: Beat note between the cooling laser light at 626 nm and a frequency comb
mode. Logarithmic scale with 300 kHz resolution bandwidth (left) and linear scale with
9.1 kHz resolution bandwidth (right). The orange line shows the intensity FWHM linewidth
of around 70 kHz.

The left plot in Figure 4.18 is recorded with a resolution bandwidth of 300 kHz which is
more than the linewidth of the beat note. A signal-to-noise ratio (SNR) of 37 dB in 300 kHz
bandwidth can be read off. The noise spectrum in the photodiode signal is approximately
flat and is band-limited to 100 MHz by the low-pass filter. The resulting SNR of the
entire beat note signal is 37 dB − 10 log10(100 MHz/300 kHz)dB = 12 dB which we found
to be insufficient for a reliable phase lock. At this stage we could insert a band-pass
filter to reduce the noise contribution to the signal. One challenge is that we want to
be able to change the beat note frequency in order to tune the frequency of the laser.
This is required since we work with cooling laser detunings from a few MHz to more than
100 MHz, depending on the requirements of each particular experiment. This would require
synchronous tuning of the center frequency of the band-pass filter which is technologically
difficult.

Instead, after further amplification the beat note signal is mixed with a local oscillator
signal from a function generator. This shifts the beat note to an intermediate frequency

fIF = |fbeat − fLO| , (4.15)

where fLO is the local oscillator frequency which is adjusted such that an intermediate
frequency of 10 MHz is reached. The mixer output is filtered with a band-pass that has a
center frequency of 10.7 MHz and a 3 dB bandwidth of 3.8 MHz. The filtering increases the
SNR to around 26 dB which is sufficient for reliable phase tracking. A digital phase and
frequency detector (PFD) [122, 123] is then used to obtain the phase difference between
the intermediate frequency signal and a fixed 10 MHz reference. An analog loop filter is
finally used to close the phase locked loop by giving feedback to the frequency tuning input
of one of the two fiber lasers in the cooling laser setup.
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The PFD is an updated version of the design shown in [123] that uses a complex pro-
grammable logic device (CPLD) instead of discrete chips to implement the digital circuitry.
It consists of two 12-bit digital counters. The first counter is incremented by the first input
and the second one is decremented by the second input. The two counter values are then
digitally added and the result is converted into an analog voltage by a digital to analog
converter. This allows tracking phase excursions of up to 4096 cycles between the two
inputs. This is required since the feedback bandwidth that the tuning input of the fiber
laser allows is not sufficient to keep the phase difference within the ±π range of a simple
analog phase detector. The frequency of the cooling laser is then given by

fcool = fn ± fLO ± 10 MHz. (4.16)

The frequency can be continuously adjusted by changing fLO. If the beat note frequency
is too close to 0 or frep/2, the “mirrored” beat note frequency component can pass through
the band-pass filter which destabilizes the phase lock. The tuning range is therefore limited
to segments of around 100 MHz width with a few MHz wide gaps in between. These gaps
can be overcome by shifting the light frequency using acousto-optic modulators (AOMs)
as described in the next section.

4.3.2 Switch and frequency shifter

PBS

λ/4

AOM

f = 100 mm

f f

Shutter

0th

+1st

RF in

In

Out

Figure 4.19: Double-pass AOM frequency shifter setup. The “cat’s eye” configuration
minimizes the angular misalignment when changing the AOM frequency. A shutter allows
blocking or unblocking the unshifted (“0th order”) component of the light. PBS, polarizing
beam splitter.

The frequency shifter setup is shown in Figure 4.19. The light coming from the second
harmonic generation stage is vertically polarized and gets reflected by a PBS. It then passes
through the AOM23 which has a center operating frequency of 150 MHz and a bandwidth
of around 100 MHz. Part of the light is diffracted by the acoustic wave, and its frequency
is up-shifted by the AOM drive frequency. An f = 100 mm lens is placed one focal length
behind the AOM and focuses the light onto a mirror. This forms a “cat’s eye” retroreflector
that ensures that the light retraces its path independent of the diffraction angle. In this way

23Brimrose QZF-150-100-280.
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misalignment of the diffracted beam is avoided when the AOM frequency is changed [124].
This dramatically increases the usable bandwidth of the setup compared to using a single
pass through the AOM. A quarter-wave plate is used to rotate the polarization of the
back-reflected beams by 90◦ with respect to the incoming beams. The 1st order diffracted
beam gets diffracted by the AOM again which doubles the frequency shift. Finally, the
output beam is separated from the incoming beam by the PBS. One disadvantage of this
configuration is that the diffraction efficiencies of AOMs for ultraviolet light, which are
usually made from quartz glass, are strongly polarization dependent. We measured a
diffraction efficiency of up to 81 % with vertical polarization, but only 19 % with horizontal
polarization. This limits the maximum overall efficiency of the frequency shifter to around
13 %. Nonetheless, this still leaves us ample power for efficient laser cooling.

One feature of this setup is that the component that is not diffracted by the AOM
(“0th order”) is overlapped with the one that is diffracted twice (“1st order”) [120]. A
fast mechanical shutter is placed close to the mirror of the cat’s eye to selectively block or
unblock the 0th order beam. Since the shutter is located close to the focal plane where the
beam is small, it achieves rise/fall times of only 33 µs and has a switching delay of around
1.6 ms. If the shutter is open, the output of the system contains two frequency components
that are separated by twice the AOM frequency. We call the component that is due to the
1st order diffraction the “near-detuned” component, and the one due to the 0th order the
“far-detuned” component. We make use of the far-detuned component during trap loading
in order to efficiently cool the hot ions (see subsection 4.6.1).

The output of the frequency shifter is finally coupled into a photonic crystal fiber that
has been hydrogen loaded in order to prevent degradation due to the intense ultraviolet
light [125]. The fiber delivers the light to the ion trap setup which is located on another
optical table. Figure 4.20 shows the relative output power after the fiber for different AOM
drive frequencies. The FWHM of the curve is around 40 MHz, corresponding to a frequency
shifting range of 80 MHz. Over time we have observed damage to the fiber input facet that
has been attributed to contamination due to particles and aerosols getting burned into the
surface [126]. We mitigate this by flushing the input fiber collimator with nitrogen.

4.4 Vacuum system
Delivering the extreme ultraviolet (XUV) spectroscopy radiation at 60.8 nm to the trapped
He+ ions comes with a number of challenges. XUV radiation is strongly absorbed in all
gases such that the XUV source has to be connected to the ion trap with a vacuum
system. The XUV radiation is being generated using high harmonic generation (HHG)
in a gas jet. In our system the resulting gas load leads to pressures in the HHG vacuum
chamber of up to a few times 10−3 mbar. At the same time we aim to keep the pressure in
the ion trap chamber below 1×10−10 mbar to minimize collisions between the trapped ions
and background gas molecules. One possibility would be to separate the different regions
with a thin aluminum foil (hundreds of nm thickness) which has some transparency in
the XUV and would also provide spectral filtering [95]. However, the extreme fragility of
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Figure 4.20: Efficiency curve of the frequency shifter setup. The FWHM is around 40 MHz.
Since the AOM is used in a double-pass configuration, the achievable frequency shifting
range is twice as large.

such foils makes them difficult to use as windows, and the large transmission losses would
reduce the achievable signal rate. We therefore constructed a differential pumping setup
for maintaining the required pressure difference while leaving a path for the laser beam.

4.4.1 Differential pumping
The vacuum system is shown in Figure 4.21. The XUV frequency comb is being generated
in an enhancement cavity located inside the HHG chamber. The XUV radiation is then
sent through a series of vacuum chambers until it reaches the ion trap. The various laser
beam paths are described in the following section, while this section focuses on the vacuum
components. For reference a detailed schematic containing all main vacuum components
is shown in Figure 4.22.

The HHG chamber is evacuated using a 450 l/s turbomolecular pump (TMP).24 In
addition a metal tube with a small hole is placed opposite to the nozzle that produces the
xenon gas jet used for the HHG. The tube is directly connected to a roughing pump. This
“gas catcher” significantly reduces the gas load and the base pressure in the chamber when
the gas jet is being operated. The next vacuum chamber is a small differential pumping
section. In order to minimize the amount of gas flowing through, it is connected to the

24Edwards STP-iX457.
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Figure 4.21: Overview of the vacuum system. The generated XUV radiation is guided to
the ion trap through several stages of differential pumping. Chambers 1, 3, and 4 contain
mirrors for steering and focusing the XUV radiation (see Figure 4.24). TMP, turbomolec-
ular pump; NEG pump, non-evaporable getter pump; TSP, titanium sublimation pump.

HHG chamber with a 1.8 mm diameter hole and to the following vacuum chamber with a
3.2 mm diameter hole. The positions of the holes are adjustable such that the XUV beam
can be sent through the chamber without clipping. The differential pumping section and
chamber 1 are being evacuated with 300 l/s25 and 450 l/s26 TMPs, respectively. Under
normal operating conditions the pressure in chamber 2 already reaches the limit set by the
compression ratio of its 450 l/s TMP.27 A second identical TMP is therefore used in series
to reduce the foreline pressure of the first pump (not shown in the figure). Chambers 3 and
4 form the ultra-high vacuum (UHV) section of the setup. Chamber 3 houses the ion trap
and contains a non-evaporable getter (NEG) pump.28 After being activated by heating,
the NEG chemically binds reactive gases such as H2, O2, and N2 and is specified for a
pumping speed of a few hundred l/s. Highly inert gases, such as argon or xenon, cannot be
pumped by the NEG. It is therefore combined with a small ion element which reaches 6 l/s
of pumping speed for argon. Chamber 4 is pumped by a 300 l/s ion pump29 which also
contains a titanium sublimation pump (TSP) for additional pumping of reactive gases. A

25Edwards STP-301.
26Edwards STP-iX457.
27Edwards STP-iX455.
28SAES NEXTorr D 500-5.
29Varian VacIon Plus 300 StarCell.
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Figure 4.23: Performance of the differential pumping system. The pressures in the vacuum
chambers are measured for different xenon backing pressures in the HHG setup. Solid lines
show pressures with the gas catcher enabled, and dashed lines without the gas catcher.

180 l/s TMP30 connected to chamber 4 allows initially pumping down the UHV section. In
normal operation it is isolated from the setup using a gate valve. After baking the UHV
section to remove adsorbed water and hydrocarbons from the chamber walls [109, p. 144],
a base pressure of around 3 × 10−11 mbar is reached in chambers 3 and 4.

All vacuum chambers are equipped with cold cathode ion gauges31 for measuring the
individual pressures. The gas load in the HHG chamber depends on the xenon backing
pressure that is being applied to the nozzle. Figure 4.23 shows the chamber pressures for
backing pressures of up to 3 bar.32 Even without the gas catcher, the pressures in chambers
1-4 are essentially unaffected by the xenon gas jet in the HHG chamber. This shows the
effectiveness of the differential pumping section with its small apertures strongly limiting
the gas flow. Comparing the data with the gas catcher (solid lines) to the data without
(dashed lines) however shows a clear reduction of the gas load in the HHG chamber and in
the differential pumping section. The gas catcher therefore allows switching to larger nozzle

30Pfeiffer TMU 200M P.
31HHG chamber and differential pumping section: Pfeiffer PKR 251 (full range gauge with additional

Pirani sensor). Chambers 1, 2, and 4: Pfeiffer IKR 270. Chamber 3: VACOM COLDION extended.
32In these measurements, chamber 1 was evacuated by a 1000 l/s TMP (Pfeiffer TMH 1000M P). This

pump was later found to cause excess vibrations and was replaced with the 450 l/s TMP listed above.
Since the pressure in chamber 1 barely rises above the base pressure, we do not expect this to significantly
influence the system performance.
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backing pressures if necessary. One planned upgrade of the HHG system is to replace the
xenon with a helium/xenon gas mixture. This increases the velocity of the molecules in
the gas jet and has been shown to reduce detrimental steady-state plasma accumulation
in an enhancement cavity [127]. However, the pressure of the gas mixture will have to be
larger in order to keep the xenon partial pressure constant.

4.4.2 Laser beam lines

HHG
output

Residual
IR

GIP

Be+ axial
cooling

500 mm

Chamber 1

Chamber 2
Chamber 3 Chamber 4

Be+ radial
cooling

Be
ionization

DM

Visible
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PD

313 nm
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BS
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beam
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XUV
mirror
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1033 nm
313 nm

235 nmHHG

Figure 4.24: Schematic of the laser beam line delivering radiation to the ion trap (not
to scale). The grazing incidence plate (GIP) steers the radiation from the high harmonic
generation setup and splits off residual infrared light. It is also used for overlapping the
HHG output with tracer beams. An insertable mirror (dashed) can send the light out of
the setup for adjusting the relative alignment of the wavelength components. The beam is
focused onto the ions by a concave XUV mirror (500 mm radius of curvature). A second
identical mirror is used as a retroreflector. BS, beam splitter; DM, dichroic mirror.

The setup for sending radiation into the ion trap is shown schematically in Figure 4.24.
The radiation that is coupled out from the HHG enhancement cavity can contain up
to a few W of residual infrared light at the fundamental wavelength (centered around
1033 nm). This light could lead to thermal damage in the subsequent optical components.
The infrared light is therefore strongly attenuated by a “grazing incidence plate” which is
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anti-reflection coated for this wavelength.33 Since the plate is hit at a very large angle of
incidence (80◦), we expect a reflectivity of around 70 % at 60.8 nm from the top SiO2 layer
of the anti-reflection coating [128]. The plate is mounted in a motorized mirror mount34

and can be used for steering the beam through the setup. The plate is partially transparent
for visible and ultraviolet light. It is therefore also used for overlapping the HHG output
with tracer beams. The first tracer has a wavelength of 532 nm and is used to make the
beam alignment visible through the windows of the vacuum chambers. The second tracer
is derived from the Be+ cooling laser at 313 nm. This light makes the trapped Be+ ions
fluoresce and can be used for fine tuning the alignment onto the ions.

The tracers have to be carefully overlapped with the HHG output. For this purpose a
metallic broadband mirror can be inserted into the beam path using a mechanical vacuum
feedthrough (dashed mirror in Figure 4.24). The mirror sends the light out of the vacuum
chamber through a window. Besides the tracer beams, the fundamental (1033 nm), 3rd
harmonic (344 nm), and 5th harmonic (207 nm) contained in the HHG output can pass
through the fused silica vacuum window. The light is then split into two paths by a
wedged beam splitter.35 The reflection is focused onto a camera using a concave metallic
broadband mirror with 500 mm radius of curvature. This geometry matches the beam
path that focuses the radiation onto the trapped ions (see below). The transmitted light
is sent onto a second camera without focusing optics. Overlapping the spot positions in
the images from the first camera ensures that the beams meet at the focus, but does not
yet fix their relative angles. This is achieved by also overlapping the spots in the images
from the second camera.

Without the mirror inserted, the beam passes through chambers 2 and 3 and encounters
the first concave XUV mirror which is located in chamber 4. The mirror has a radius of
curvature of 500 mm and is coated with a custom B4C multi-layer coating36 which achieves
a measured reflectivity of 33.4 % at 60.8 nm.37 The mirror focuses the light into the ion
trap. As discussed in chapter 3, we plan to excite the 1S-2S transition in He+ using two
counter-propagating laser beams. This is achieved by placing a second identical XUV
mirror 500 mm behind the ion trap which reflects the beam back onto itself. The XUV
mirrors are mounted in motorized mirror mounts38 which are placed on motorized linear
stages39 for focus adjustment. The 313 nm tracer beam makes the Be+ ions fluoresce. If a
large ion crystal is loaded into the trap, the position and size of the focus can be observed
in the horizontal and vertical plane using the ion imaging system (see section 4.2). The
light for the 313 nm tracer beam is delivered to the setup using a hydrogen loaded photonic
crystal fiber [125]. If the second XUV mirror is adjusted correctly, the tracer beam is sent

33Custom coating from Layertec.
34Newport 8822-UHV.
35Thorlabs BSF10-UV.
36Produced by optiX fab.
37Mirrors in this wavelength range exhibit large losses due to material absorption in the multi-layer

stack.
38SmarAct STT-25.4-UHV.
39SmarAct SLC-2445-O30-UHV.
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back through the setup, passes through the grazing incidence plate again, and is coupled
back into the fiber. This back-coupled light is monitored using a beam splitter and a
photodiode which are placed before the fiber. The signal of this photodiode is used to
precisely adjust the alignment of the second XUV mirror.

Cooling and ionization lasers

For laser cooling single ions, the laser beam has to have a projection onto all three trap
axes. On the other hand, it is advantageous to align the laser beam parallel to the trap
axis when working with three-dimensional Coulomb crystals (see section 2.2). The former
is achieved by sending a laser beam diagonally through chamber 3 (“radial cooling” beam
in Figure 4.24). The light is focused by an f = 200 mm lens to a spot size of 2w0 ≈ 70 µm.
Direct optical access along the trap axis is blocked by the XUV mirrors. However, the
mirrors transmit around 7 % at 313 nm such that the axial cooling beam can be sent
through the first XUV mirror. The light is focused by an f = 500 mm lens which results
in a spot size of 2w0 ≈ 180 µm in the center of the ion trap.

4.5 Experiment control system
The ion trap setup contains a large number of individual components whose settings have
to be adjusted during operation. Figure 4.25 shows a high-level overview of the computer
system used to control the setup.

Modern PC hardware and operating systems are optimized for throughput, i.e. to max-
imize the amount of data and number of calculations that can be processed per unit time.
On the other hand, the exact timing of the program execution is usually much less impor-
tant and can fluctuate wildly depending on factors such as system load. This makes them
unsuitable for controlling experimental sequences in which accurate timing is required. Our
control system therefore combines a desktop PC with a dedicated real-time controller that
is specifically designed for atomic physics experiments.40

The PC controls many lab devices, such as the EMCCD cameras, power supplies, signal
generators, and the I/O card that generates the DC trap voltages. We wrote a custom
software in Python (“ion trap software”) that provides a graphical user interface41 for
adjusting the device settings and for viewing the camera images.

The real-time controller is based on a field-programmable gate array (FPGA). It fea-
tures digital inputs and outputs, analog inputs, and several independent signal generator
channels based on direct digital synthesis (DDS). The FPGA controls the timing sequence
of the digital output signals and DDS settings with 1 ns resolution. The digital inputs are
used for digitizing the pulses generated by the PMT modules, and the analog inputs record
voltages from several photodiodes that monitor power levels in the setup. The controller
is programmed in a Python-based language. The compiled programs and the acquired

40ARTIQ Sinara [129].
41The interface is implemented using the Qt framework: https://www.qt.io/.

https://www.qt.io/
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Figure 4.25: Overview of the experiment control system. A software running on a desktop
PC provides a graphical user interface and controls a range of devices that do not require
accurate timing. A dedicated real-time controller produces accurately timed signals and
records the pulses generated by the PMT modules.

data are exchanged between the controller and the PC via Ethernet. A program named
“ARTIQ master” handles the communication and controls the program execution.

Sometimes the real-time controller has to work together with the ion trap software. For
example, during Be+ loading (see section 4.6.1), the real-time controller measures the ion
fluorescence and controls the cooling laser frequency shifter (see subsection 4.3.2), while
the ion trap software records camera images and measures the ion crystal size. The real-
time controller queries the ion trap software for the ion crystal size using remote procedure
calls that are transmitted by the ARTIQ master software.42 Using the same method the
real-time controller can also access the other devices that are managed by the ion trap
software.

4.6 Ion loading
This section describes how we load different ion species into our trap. Besides Be+ and
He+, we can also load H+

2 molecular ions. These have the same charge-to-mass ratio as
42We use the XML-RPC method that is implemented as part of the Python standard library: https:

//docs.python.org/3/library/xmlrpc.html.

https://docs.python.org/3/library/xmlrpc.html
https://docs.python.org/3/library/xmlrpc.html
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He2+ and are therefore used for testing the ion detection (see chapter 5). Figure 4.26 shows
an overview of the components that are involved. Neutral beryllium is evaporated in an
oven and is sent through the trapping region. There, the atoms are resonantly ionized by a
235 nm laser beam and are subsequently laser cooled using 313 nm light. Since helium and
hydrogen are gases at room temperature, they can be leaked into the vacuum chamber.
An electron gun is used for ionizing the atoms or molecules. In the following the individual
components and the loading sequences are described in detail.

Be oven
Electron gun

Be+ axial
cooling
313 nm

Be ionization
235 nm

Ion trap

Be+ radial
cooling
313 nm

Figure 4.26: Overview of the ion loading setup. A beryllium atomic beam is produced in
an oven and is sent through the trapping region. The atoms are ionized by a 235 nm laser
beam. Helium and molecular hydrogen can be leaked into the vacuum chamber with a
motorized valve and are ionized by electron impact.

4.6.1 Be+ loading

Be oven

Beryllium has a relatively high melting point of 1287 ◦C. This is considerably higher than
that of typical aluminum alloys (≲ 650 ◦C) and only around 140 K lower than that of 304
stainless steel [130]. It is therefore more challenging to construct an oven for evaporating
beryllium than for many other elements used in atomic physics experiments.

The design of our oven is described in detail in [131]. At its core it contains a short
piece of beryllium wire that is placed in an aluminum oxide ceramic tube. The tube is
heated by passing a current through a tantalum wire wound around it. We typically work
with currents between 1.9 A and 2.3 A, corresponding to heating powers of 6.2 W to 9.7 W.
The evaporated beryllium is then formed into a diverging atomic beam by an aperture.
The oven is aligned such that the beam crosses the trapping region.
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Resonant laser ionization

We use a 235 nm laser to resonantly ionize the beryllium atoms. Figure 4.27 shows the
level scheme of the process. The atoms are first excited from the 2s2 1S0 ground state to
the 2s2p 1P1 excited state. The transition has a wavelength of 234.932 321(7) nm [132] and
a linewidth of 86 MHz [133], corresponding to a saturation intensity of 8.6 kW/m2. From
the exited state the atoms can then be ionized by the 235 nm light.

2s2 1S0

2s2p 1P1

235 nm

235 nm

0

42 565.4501(13)

75 192.64(6)

Level (cm-1)

Be+ (2s 2S1/2)

Figure 4.27: Relevant levels and transitions for resonant photoionization of beryllium. The
transition wavelength is taken from [132] and the ionization limit from [134].

Resonant photoionization has a number of advantages over electron impact ionization.
When operating an electron gun near the ion trap, it is difficult to avoid electrons hitting
the various surfaces of the setup. This can lead to patch charges on insulators that create
stray fields in the trapping region. The DC trap electrodes are connected to their voltage
sources through low-pass filters with large resistors (see subsection 4.1.4). If they are
struck by electrons, the dissipated currents significantly change their voltages which can
destabilize the trap. An ultraviolet laser beam can also create surface charges due to the
photoelectric effect. However, it is easy to focus the beam to the trapping region which
minimizes the illuminated surfaces.

Another advantage is species selectivity. While electron impact can ionize any atom, the
resonant laser ionization relies on a spectral line in beryllium.43 This avoids contaminating
the trap with unwanted ion species that can be produced from the background gas.

Ionization laser system

We generate the 235 nm light for ionization by frequency quadrupling the output of a diode
laser system. Figure 4.28 shows a schematic of the setup.

A grating-stabilized external-cavity diode laser [135] generates around 70 mW of light
at 940 nm. The power is boosted to 400 mW in a tapered amplifier. Optical isolators

43In many atomic species contamination by other isotopes is a concern. This is not an issue in beryl-
lium since all isotopes besides 9Be have relatively short lifetimes such that their natural abundances are
negligible.
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Figure 4.28: Schematic of the ionization laser system. ECDL, external-cavity diode laser;
DM, dichroic mirror; PD, photodiode; LP filter, low-pass filter. Focal lengths are given in
mm.

protect the diode laser and the tapered amplifier from back reflections that can disturb the
single-mode operation of the laser and can cause damage to the amplifier.

The light is then sent into a fiber-coupled frequency doubling module.44 In the module
second harmonic generation takes place in a periodically poled lithium niobate (PPLN)
crystal that is shaped to also act as a waveguide. In this way high optical intensity can be
maintained over a longer interaction length than is possible by focusing a laser beam into
a bulk crystal. This allows for efficient single-pass frequency conversion at relatively low
input power levels [136]. The temperature of the crystal has to be fine tuned and stabilized
in order to maintain quasi-phase matching. This is achieved using the built-in thermistor
and Peltier element of the module, and an external temperature controller. In our setup
the module produces an output power of around 30 mW at 470 nm.

A dichroic mirror is used to split off the residual infrared light. Part of this light is
sent to a wavelength meter45 for monitoring the ECDL wavelength. At the melting point

44NTT WH-0470-000-A-B-C.
45HighFinesse WS7.
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of beryllium, the FWHM Doppler width of the photoionization transition is 12 GHz [137,
p. 84]. Due to space constraints in our vacuum chamber, the atomic beam has an angle of
19◦ to the ionization laser beam (see Figure 4.26). We therefore do not expect a significant
reduction of the Doppler width due to having an atomic beam. At the fundamental wave-
length this corresponds to an FWHM width of 3 GHz. The passive frequency stability of
the ECDL is therefore sufficient to maintain resonance, and no active feedback system is
required.

The 470 nm light is then frequency doubled to 235 nm in a β-barium borate (BBO)
crystal in a bow-tie enhancement cavity. Critical type I phase matching is achieved at
an angle of 58.2◦. We decided to use a Brewster-cut uncoated crystal to avoid potential
degradation of anti-reflection coatings due to the generated ultraviolet light.

For a given power the efficiency of second harmonic generation depends on the crystal
length, and on the size and shape of the focus inside the crystal. This was studied the-
oretically in a seminal paper by G. Boyd and D. Kleinman [138]. They found that the
efficiency depends on the parameter ξ = l/b, where l is the length of the crystal, and b is
the confocal parameter of the focused light. The optimum value varies from ξ = 2.84 in
the absence of walk-off (noncritical phase matching) to ξ = 1.39 for large walk-off. The
results were later generalized to the case of elliptical beams [139].

In an enhancement cavity the focus parameters are determined by the cavity mode.
For a given cavity geometry, the mode can be calculated using the ABCD matrix formal-
ism for the propagation of Gaussian beams [140]. We found it convenient to implement
the calculations in a Python program46 such that the resulting mode for different cavity
configurations could be quickly evaluated. The theoretical efficiency is then calculated
by performing the numerical optimization described in [139]. After analyzing different
possible configurations, we decided to use the same cavity geometry that was previously
used in a similar system [141]. In this design the beam in the collimated arm of the cav-
ity (opposite to the crystal) is round which simplifies mode matching. The crystal has
a length of 10 mm. The angle of incidence on the focusing mirrors, which have a radius
of curvature of 38 mm, is 16.9◦. The total optical path length of the cavity is 373 mm,
resulting in a free spectral range of 803 MHz. The focus inside the crystal is elliptic with
a Gaussian waist radius wh = 22.2 µm in the horizontal direction and wv = 14.5 µm in
the vertical direction. The resulting single-pass conversion efficiency is calculated to be
Γ = Pout/P

2
in = 1.0 × 10−4 W−1, where Pin is the input power at the fundamental wave-

length, and Pout is the generated power. This is 47 % smaller than the maximum that can
be achieved with an elliptical beam [139]. However, we found that this “ideal focusing”
would be difficult to achieve since the Brewster-cut crystal introduces ellipticity in the
wrong direction [139].

Another degree of freedom is the transmission of the input coupler mirror. The con-
version efficiency is maximum for an impedance matched cavity [142], i.e. when the input
coupler transmission is equal to the round-trip loss (excluding the input coupler). Since it
is difficult to precisely estimate the losses before the cavity is built, we obtained different

46The source code is available at https://github.com/schmidf/shg-cavity-calculator.

https://github.com/schmidf/shg-cavity-calculator


4.6 Ion loading 99

mirrors with reflectivities of 99.7 %, 99.5 %, and 99.1 %. The best efficiency was achieved
with 99.1 % reflectivity.

One of the cavity mirrors is mounted on a piezoelectric actuator for active length
stabilization. The error signal is obtained using the Pound-Drever-Hall method [143], and
the required sidebands are generated by modulating the ECDL current.

Figure 4.29 shows the mechanical construction of the cavity. The mirror mounts are
directly screwed into a 37 mm thick aluminum base plate which makes the setup very rigid.
Their positions are fixed according to the design by alignment pins that slot into precisely
machined holes in the plate. The BBO crystal is mounted on a linear stage and a kinematic
rotation mount47 for fine tuning of the focusing and phase matching. To prevent thermal
drifts of the phase matching, its temperature is actively stabilized with a temperature
sensor and a heater. In order to prevent contamination of the optical surfaces, the cavity
has an airtight enclosure, and filtered and dry air is circulated through the system.

Figure 4.29: Cavity for resonant second harmonic generation. The light at 470 nm is
coupled in through the mirror in the bottom right. The mirror on the top left is dichroic
and transmits the generated light at 235 nm. The base plate is machined from a 37 mm
thick block of aluminum and provides good mechanical stability.

The cavity produces an output power of a few hundred µW which is sufficient for efficient
trap loading. The light is loosely focused into the trapping region using an f = 200 mm
lens.

47Thorlabs FBTB/M.
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Crystal degradation and digital loop filter

Despite the relatively low power levels, we observed significant degradation of the BBO
crystal due to the generated ultraviolet light. This manifests itself as a drop in the gener-
ated output power over time. Furthermore, the cavity resonance “splits” into a double-peak
structure which we attribute to increased absorption of the fundamental Gaussian cavity
mode. The output power is typically restored after shifting the position of the crystal
which indicates that it is responsible for the degradation. A number of crystals from sev-
eral manufacturers were tested. While some showed rapid degradation on the time scale
of a few minutes, others lasted for many hours of operation. However, none were entirely
immune to degradation. The longevity of the system can be significantly improved by only
turning on the cavity lock during ion loading.

We therefore developed a digital loop filter that can be remote controlled and that
automatically acquires the cavity lock. It is based on a commercial RF signal acquisition
and generation board.48 The board is based on a system on a chip that contains an
ARM processor and an FPGA. The FPGA controls two 14-bit analog to digital converters
(ADCs) and two 14-bit digital to analog converters (DACs) which operate at 125 MS/s. It
also has four auxiliary analog input channels with 12-bit resolution and 100 kS/s sampling
rate.

We implemented a custom FPGA firmware49 for cavity locking. The error signal is
sampled by one of the ADC channels. A digital proportional-integral-derivative (PID)
controller implemented in the FPGA calculates a correction signal which is output using
the DAC. We also added the automatic relocking algorithm from [144] to our firmware. A
photodiode is placed behind one of the cavity mirrors and records the leakage power which
is proportional to the power circulating in the cavity. This signal is digitized by one of the
auxiliary analog inputs of the FPGA. If the signal drops below a configured threshold, the
FPGA freezes the state of the PID controller and starts sweeping the output voltage in a
triangle pattern with increasing amplitude (see Figure 4.30). Once the signal exceeds the
threshold again, the sweep is stopped and the PID controller is re-engaged. This algorithm
reliably acquires the lock when the feedback controller is enabled, or after a mechanical
disturbance has unlocked the cavity.

Loading sequence

The beryllium loading sequence is fully automated using the experiment control system.
First, the beryllium oven and the ionization laser are turned on. The Be+ ions generated
in the trapping region are initially very hot. This leads to a large Doppler broadening,
making laser cooling inefficient. We found that it is difficult to crystallize the ions when
the cooling laser detuning is too small. In the beginning of the loading cycle, the AOM
in the frequency shifter setup is therefore turned off and the 0th order shutter is opened
such that only the far-detuned frequency component is applied (see subsection 4.3.2). This

48Red Pitaya STEMlab 125-14.
49The firmware is available at https://github.com/schmidf/rp-lockbox.

https://github.com/schmidf/rp-lockbox
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Figure 4.30: Demonstration of automatic cavity relocking. The cavity input is blocked for
a short time such that the lock is lost. The drop in cavity leakage power is registered by
the FPGA which then sweeps the Piezo voltage to search for a cavity resonance. Once
a sufficiently high leakage power is detected again, the sweep is stopped and the PID
controller is re-engaged. The linewidth of the enhancement cavity is not much larger than
that of the 470 nm laser. This leads to a relatively high noise level visible in the leakage
and error signals.

component is red-detuned from the resonance by a few hundred MHz.
Once the first ions are crystallized into a Coulomb crystal, the fluorescence recorded

with the PMTs increases. The experiment control system detects this and turns on the
AOM in the frequency shifter setup. This enables the near-detuned frequency component
which strongly increases the scattering from the trapped ions. The ion crystal shape can
then be monitored using the cameras. At this point the loading process also becomes
more efficient since the already crystallized ions sympathetically cool the newly generated
ones. The images from one of the cameras are automatically analyzed to determine the
ion crystal size. The image analysis is implemented in Python using the scikit-image
library [145] and is illustrated in Figure 4.31. First, foreground and background pixels are
separated according to a threshold brightness value that is calculated using the triangle
algorithm [146]. The region covering the ion crystal contains holes due to image noise and
gaps between the ions. These are removed using a morphological closing operation on the
binary image [147]. The largest contiguous region is then identified as the ion crystal. Its
ellipse parameters [147] finally give an estimate for the height and width of the ion crystal.

When the ion crystal width has reached a configured target value, the ionization laser
and beryllium oven are automatically turned off which ends the loading sequence. In this
way we can reliably produce nearly identical ion crystals despite the stochastic nature of
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(a) (b)

(c) (d)

Figure 4.31: Automated measurement of the ion crystal size in a camera image. (a) Input
image. (b) Binary separation between foreground and background pixels. (c) Identified
ion crystal region after holes have been closed by a closing operation. (d) Extracted ellipse
parameters of the ion crystal region.

the loading process.

4.6.2 He+/H+
2 loading

The first dipole-allowed transition from the ground state of neutral helium (1s2 1S0 to
1s2p 1P1) has a wavelength of only 58.4 nm [148]. Resonant laser ionization is therefore
not feasible, and electron impact ionization is used instead. As mentioned above, electron
beams can lead to detrimental effects in ion traps due to patch charges created on insulting
surfaces. In our setup operating the electron gun leads only to weak stray fields in the
trapping region. These can be easily compensated by adjusting the voltages of the DC
trap electrodes and the compensation electrode. However, operating the electron gun for
more than a few seconds significantly increases the background pressure in the vacuum
chamber which leads to ion loss. Large Be+ ion crystals can therefore only be loaded
using resonant photoionization in our setup. This is not a significant limitation for loading
typical numbers of He+ or H+

2 ions which takes a few seconds at most.

Gas system

Figure 4.32 shows the setup that allows filling the ion trap chamber with a controlled
partial pressure of hydrogen or helium gas. The gas reservoir is first evacuated with a
turbo pumping station.50 The pumps are then isolated, and the reservoir is filled with a
few ten mbar of hydrogen or helium. A motorized leak valve51 introduces a small amount
of gas into the ion trap chamber. The pressure in the chamber is measured with a cold

50Edwards T-Station 85H Dry.
51VAT Series 590.
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cathode ion gauge, and the built-in feedback controller of the leak valve adjusts its setting
to maintain a configured pressure value.

Turbo pumping
station

Gas
reservoir

Pressure
gauge

Motorized
leak valve

Ion trap
chamber

Pressure
gauge

Feedback

H2 He

10-100 mbar

Figure 4.32: Gas system for introducing hydrogen or helium into the ion trap chamber.
The rest of the vacuum system is not shown (see section 4.4).

Electron gun

Our electron gun was designed by B.-m. Ann and is described in detail in [149]. A cross
section of the design is shown in Figure 4.33.

Uacc

Uheat

Uweh Ulens

BaO
cathode

Electron
lenses

Wehnelt
cylinder

Figure 4.33: Cross section view of the electron gun. See the main text for details.

The electrons are emitted by a BaO coated cathode52 which is heated by a DC current.
The coating leads to a lower work function compared to a standard tungsten cathode.

52Kimball Physics ES-015.
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It can therefore operate at a lower temperature which increases the lifespan and reduces
the amount of light that is emitted which could otherwise overwhelm the fluorescence
imaging system. The acceleration voltage Uacc = −200 V is applied to the filament. It is
placed inside a Wehnelt cylinder which is held at Uweh = −160 V. The potential difference
accelerates the electrons through a small hole in the cylinder. They are then focused by
three lens electrodes. The outer ones are grounded, and the voltage Ulens = −120 V is
applied to the middle one. This produces a collimated electron beam with 200 eV electron
energy. The emission current depends on the temperature of the filament and can be
controlled by adjusting the heater voltage Uheat. Typically, we use currents between 50 µA
and 100 µA.

Loading sequence

To produce a mixed ion crystal, we first load a Be+ ion crystal as described in the previous
section. The He+/H+

2 loading sequence is automated using the experiment control system.
First, the pressure setpoint of the motorized leak valve is configured. The feedback

system reaches the target value after a few seconds. We typically use pressures between
5×10−10 mbar and 5×10−9 mbar. The electron beam has to pass close to one of the endcap
electrodes to reach the trapping region (see Figure 4.26). This leads to a deflection of the
beam since the electron gun acceleration voltage is on the same order of magnitude as
typical endcap voltages. The endcap voltages are therefore ramped down to 100 V during
the loading process. This is sufficient for stable trapping, but low enough that the electron
beam is not affected too much. The electron gun is then turned on for a few seconds to
ionize the gas. Finally, the leak valve is closed, and the endcap voltages are ramped back
up to their original values. Figure 4.34 shows a Be+ ion crystal before and after He+ ions
were loaded into the trap. Since the He+ ions are lighter than the Be+ ions, they are more
tightly confined and arrange themselves along the trap axis (see Equation 2.20). This
displaces Be+ ions from the center of the ion crystal resulting in a dark “core” visible in
the images.

4.7 Trap characterization
In subsection 4.1.2 the expected potential for our ion trap geometry obtained using a finite
element analysis software was shown. This section describes the experimental characteri-
zation of the potential of our realized ion trap.

4.7.1 Radial secular frequencies
We characterize the radial potential of our trap by exciting the radial secular motion of
a single trapped Be+ ion. We do this by applying an additional oscillating voltage to the
compensation electrode (see subsection 4.1.4). The ion is laser cooled using the radial
cooling beam (see Figure 4.24) with a saturation parameter s ≈ 10. The cooling laser is
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100 µm

100 µm

Figure 4.34: Fluorescence image of a Be+ ion crystal before (top) and after (bottom)
loading He+ ions into the trap. The He+ ions do not fluoresce and are visible as a dark
“core” in the ion crystal. The focus of the imaging system is adjusted close to the center
of the ion crystal. However, some of the fluorescence from the Be+ ions located in front
and behind of the He+ ions is visible in the bottom image such that the region containing
the He+ ions is not entirely dark.

red-detuned from the cooling transition by 112 MHz. The excitation frequency is scanned
in 250 steps over a range of a few hundred kHz around the resonances. At each frequency
step ion fluorescence is collected for 10 ms using the PMTs. Figure 4.35 shows a typical
resulting secular spectrum. Under the experimental conditions, the secular excitation leads
to an increase in the fluorescence emitted by the ion. The radial secular resonance is split
into a pair of resonances. This shows that the potential of our trap is not perfectly radially
symmetric (see section 2.1.3).

The measurement is repeated for different RF powers applied to the helical resonator.
The endcaps are held at a fixed voltage of 400 V which results in an axial secular frequency
of ωz = 2π × 748 kHz (see below). The results are shown in Figure 4.36.

The secular frequencies along the two radial axes of a linear Paul trap are given by
Equations 2.29 and 2.30. In general the frequency of a radial secular resonance can be
written as

ωsec =
√
ω2

rf ± ω2
dc − 1

2ω
2
z , (4.17)

where ωrf is the dynamic confinement created by the oscillating trap field, and ωdc is the
confinement or deconfinement due to the DC electrodes. From Equation 2.31, we find

ωrf ∝ V ∝
√
Prf , (4.18)
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Figure 4.35: Typical secular scan spectrum showing the radial excitation of a single Be+

ion. On resonance the ion starts to move which increases the fluorescence intensity. The
resonance is split into a pair of resonances which indicates that the radial symmetry of the
ion trap is broken.

where V is the amplitude of the RF signal at the trap RF electrodes, and Prf is the RF
power applied to the helical resonator. We therefore fit the experimental points with the
following function:

ωsec =
√
αPrf + β, (4.19)

where α and β are the fit parameters.
For the upper resonance we obtain αupper = (2π × 2.03 MHz)2/W, βupper = −(2π ×

598 kHz)2, and for the lower resonance we obtain αlower = (2π × 2.02 MHz)2/W, βlower =
−(2π × 985 kHz)2.

The amplitude of the RF signal is given by

V = η
√

2Z0Prf , (4.20)

where Z0 = 50 Ω is the characteristic impedance of the RF amplifier, and η is the voltage
enhancement of the helical resonator. We obtain a theoretical value for the parameter α
by inserting Equation 4.20 into Equation 2.31:

ω2
rf = Q2V 2

2m2Ω2r4
eff

= Q2η2Z0

m2Ω2r4
eff
Prf = αtheorPrf , (4.21)
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Figure 4.36: Radial secular frequencies of a single Be+ ion measured for different RF powers
applied to the helical resonator. The blue circles show the position of the upper resonance
and the orange squares that of the lower resonance. The solid and dashed lines are fits of
Equation 4.19 to the upper and lower resonance data, respectively.

where Q and m are the charge and mass of a Be+ ion, Ω = 2π × 66.05 MHz is the radio
frequency applied to the trap, and reff = 0.468 mm is the effective size of the trap (see
section 4.1.2). As discussed in section 4.1.3, we observed that the voltage enhancement of
the RF resonator has degraded somewhat over time. If we take a typical value η ≈ 14, we
get αtheor = (2π × 1.78 MHz)2/W which is in reasonable agreement with the experimental
values. This indicates that the radial trap potential agrees with the shape obtained from
the simulations.

4.7.2 Axial secular frequencies
The axial potential of the trap is characterized in a similar way by exciting the axial secular
motion of a single trapped Be+ ion. In this case the excitation signal is applied to one of
the endcap electrodes (see subsection 4.1.4). The ion is laser cooled with the radial cooling
beam only. Good results were achieved for the secular excitation spectra with a saturation
parameter s ≈ 1 and with the cooling laser red-detuned from the resonance by 9 MHz.
A typical axial secular spectrum is shown in Figure 4.37. At the chosen parameters the
excitation leads to a strong decrease in the fluorescence emitted by the ion.

The secular frequency is measured for different voltages Uec applied to the endcap
electrodes. The results are shown in Figure 4.38.
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Figure 4.37: Typical secular scan spectrum showing the axial excitation of a single Be+

ion. The ion motion on resonance leads to a significant drop in the fluorescence intensity.

For an ideal linear Paul trap, the axial secular frequency is given by Equation 2.25
and scales with the square root of the endcap voltage Uec. The geometrical factor κ
can be obtained by fitting this function to the data. However, we found that the fit is
unsatisfactory for our experimental data. Instead, we use the following fit function:

ωz =
√
QκUec

mz2
0

+ ω2
0, (4.22)

where z0 = 3.5 mm is the distance between the endcap electrodes and the trap center. The
fit parameters are the geometrical factor κ, and ω0 which characterizes a contribution to the
axial confinement that is independent of the endcap voltage. The fit results are κ = 0.054
and ω0 = 2π × 291 kHz. This disagrees with the finite element method simulation of
the trap potential (see section 4.1.2) which predicts κ = 0.073 and no endcap voltage-
independent term ω0. The finite length of the trap electrodes can in principle lead to RF
confinement along the trap axis. We have used the finite element analysis software53 to
evaluate this effect for our trap geometry. According to the simulation results, the axial RF
confinement is around 1000 times weaker than the radial RF confinement and can therefore
not explain the discrepancy. This was confirmed experimentally by measuring the axial
secular frequency for different radial secular frequencies. The endcap voltage was set to
a relatively low value of 100 V such that ω0 contributes significantly to the axial secular

53COMSOL Multiphysics.
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Figure 4.38: Axial secular frequencies of a single Be+ ion measured at different endcap
voltages (blue circles). The theoretical expression for the axial secular frequency in an
ideal linear Paul trap (Equation 2.25) gives an unsatisfactory fit to the experimental data
(green dashed line). The orange line is a fit of Equation 4.22 where an endcap voltage-
independent axial confinement was added.

frequency. Under these conditions changing the radial secular frequency by a factor of
three led to no significant change of the axial secular frequency.

As we will show in the next section, small manufacturing imperfections that change
the positions of the blade electrodes can lead to significant deviations from the theoretical
potential. While the origin of the spurious axial confinement remains unclear, we suspect
that it might be caused by such imperfections.

4.7.3 Excess micromotion

So far we have focused only on the secular ion motion in the effective pseudopotential of
the trap. As discussed in subsection 2.1.2 and subsection 2.1.3, the oscillating trap poten-
tial causes an additional micromotion component at the trap drive frequency Ω. In this
section the theory of ion micromotion is reviewed, and measurements of the micromotion
amplitude in our trap are presented. Finally, the resulting effects of micromotion on the
He+ spectroscopy are estimated.
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Stray fields

Micromotion is often caused by stray electric fields that displace the ions from the node of
the RF potential. We write the position of an ion in the trap as u = uxex + uyey + uzez,
where ex, ey, and ez are unit vectors along the three trap axes. The coordinate system is
shown in Figure 4.1, Figure 4.8, and Figure 4.9. The ion is affected by a static electric field
Edc. Such a field can for example be caused by surface charges on the trap electrodes. If
multiple ions are trapped together, Edc also contains the fields created by the other ions.
The resulting equations of motion are inhomogeneous forms of the Mathieu differential
equation [48, 150]:

üi + [ai + 2qi cos(Ωt)]Ω
2

4 ui = QEdc · ei

m
, (4.23)

where ai and qi are the Mathieu parameters (see subsection 2.1.3), and Q and m are the
charge and mass of the ion.

An approximate solution of Equation 4.23 for |ai|, q2
i ≪ 1 is [48]

ui(t) = [u0,i + u1,i cos(ωsec,it+ φ0,i)]
[
1 + qi

2 cos(Ωt)
]
, (4.24)

where u1,i is the amplitude of the secular motion, φ0,i is a constant that depends on the
initial conditions,

ωsec,i = Ω
2

√
ai + q2

i

2 (4.25)

is the secular frequency along trap axis i, and

u0,i = QEdc · ei

mω2
sec,i

(4.26)

is the displacement of the average ion position from the trap center due to Edc. Equa-
tion 4.24 contains two terms that oscillate at frequency Ω. The term proportional to the
secular motion is called the “intrinsic micromotion”. It does not depend on Edc and is
strongly reduced by laser cooling since this damps the secular motion. The term propor-
tional to u0,i is called the “excess micromotion”. Since it is a driven motion, it cannot be
significantly reduced by laser cooling [48].

Residual RF fields

More generally, excess micromotion is due to a residual RF electric field at the equilibrium
position of the ion:

Erf(t) =
∑

i=x,y,z

Ẽrf,i cos(Ωt+ φrf,i)ei, (4.27)

where Ẽrf,i and φrf,i are the amplitude and phase of the residual RF electric field component
along the trap axis i. In the case of stray electric fields, it is the displacement of the ion from
the node of the RF potential that leads to a residual RF electric field. Another possible
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source is a phase shift between the signals applied to the RF electrodes. This leads a
residual RF electric field that cannot be compensated by shifting the ion position [48]. In
our trap the lengths of the wires connecting the RF resonator to the electrodes are precisely
matched to minimize this effect. We therefore expect that all field components present in
the trap are in phase such that we can set φrf,i = 0. We obtain

Erf(t) = Ẽrf cos(Ωt), (4.28)

where Ẽrf = ∑
i Ẽrf,iei is the vector amplitude of the residual RF electric field.

A real linear Paul trap may not be perfectly symmetric due to manufacturing imper-
fections. As we will show below, this can lead to an axial component of Erf(t) which does
not vanish anywhere along the trap axis. It is therefore also not possible to minimize this
component by shifting the ion position.

The equation of motion for the excess micromotion velocity vemm is [150]

mv̇emm = QẼrf cos(Ωt). (4.29)

By integrating Equation 4.29, we find

vemm = Q

mΩẼrf sin(Ωt). (4.30)

The excess micromotion increases the average kinetic energy of the trapped ion by

⟨Ekin,emm⟩ = 1
2m

〈
|vemm|2

〉
= 1
m

(
Q

2ΩẼrf

)2
, (4.31)

where Ẽrf =
∣∣∣Ẽrf

∣∣∣, and ⟨⟩ signifies temporal averaging.
The trajectory of the excess micromotion around the equilibrium position is obtained

by integrating Equation 4.30 once more:

uemm = − Q

mΩ2 Ẽrf cos(Ωt). (4.32)

Micromotion measurements

A variety of different methods have been used for measuring micromotion amplitudes (an
overview is given in [150]). A conceptually simple one is to monitor changes in the ion
position when the strength of the RF potential is being raised or lowered [48]. If the secular
frequency along the axis i is changed from ωsec,i to ω′

sec,i, the average ion position along that
axis changes from u0,i to u′

0,i. By using Equation 4.26, the stray electric field component
along the axis i can be calculated:

Edc · ei = m

Q

(
1

ω
′2
sec,i

− 1
ω2

sec,i

)−1

(u′
0,i − u0,i). (4.33)

Figure 4.39 shows an exemplary measurement with this method. A single Be+ ion was
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Figure 4.39: Electric field determination by ion position measurements. The relative shift
of the ion position is measured when the radial secular frequency is reduced from 1470 kHz
to 793 kHz. A minimal displacement is obtained for a compensation electrode voltage of
14.18 V. In the insets the left image shows the ion with the stronger confinement and the
right image with the weaker confinement. The scale of the right vertical axis is calculated
using Equation 4.33.

loaded into the trap. The voltages of the two DC electrodes and the compensation electrode
(see Figure 4.1 and Figure 4.9) were first optimized such that the equilibrium position of
the ion changes as little as possible when lowering the strength of the RF potential. The
voltage applied to the compensation electrode was then swept over a range from 4 V to
26 V. At each point an image of the ion was taken with strong confinement (ωsec,x =
ωsec,y = 2π × 1470 kHz) and with weak confinement (ω′

sec,x = ω′
sec,y = 2π × 793 kHz). Due

to the electrode geometry, the field created by the compensation electrode is predominantly
in the vertical direction (along (ex + ey)/

√
2). The vertical shift of the ion position was

extracted by fitting a 2D Gaussian to each image. A minimum position shift is achieved
for a compensation electrode voltage of 14.18 V.

While the position shift method is fast and easy to implement, it can only detect
micromotion due to stray electric fields. It is insensitive to residual RF electric fields that
do not shift the equilibrium position of the ion.

A more direct technique is the “photon-correlation method” [48, 150]. Micromotion
along the cooling laser beam leads to an effective phase modulation in the rest frame of



4.7 Trap characterization 113

0

5000

10000

15000
Ucomp

6.0 V

0

5000

10000

15000
Ucomp

16.0 V

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0

5000

10000

15000
Ucomp

26.0 V

0
π
4

π
2

3π
4 π

5π
4

3π
2

7π
4 2π

Trap RF phase

Time delay (ns)

C
ou

n
ts

Figure 4.40: Photon correlation signals recorded with the TCSPC (blue circles) for different
compensation electrode voltages. The orange lines are fits based on a numerical solution
of the optical Bloch equations (see Appendix B).

the ion:
∆ϕ(t) = k · uemm = − Q

mΩ2 k · Ẽrf cos(Ωt), (4.34)

where k is the wave vector of the cooling laser. The strength of the modulation is charac-
terized by the modulation index

β = Q

mΩ2 k · Ẽrf . (4.35)

The phase modulation can be interpreted as a periodic Doppler shift that changes the
detuning of the cooling laser in the rest frame of the ion. Therefore, the fluorescence
intensity emitted by the ion is modulated in sync with the trap RF signal. We use the
PMTs to detect the fluorescence with very high time resolution (see section 4.2.2). A
time-correlated single photon counter54 (TCSPC) is used to correlate the photon detection
events from the PMTs with the trap RF signal. The output of the TCSPC is a histogram
of photon counts which are binned according to their arrival time relative to the preceding
zero crossing of the trap RF signal (see Figure 4.40).

54PicoQuant PicoHarp 300.
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The lifetime of the upper state of the Be+ cooling transition is around 8.9 ns (see sec-
tion 2.5) which is on a comparable time scale to the length of one micromotion cycle
(2π/Ω = 15.1 ns). The steady-state approximation for the fluorescence modulation derived
in [48] is therefore not applicable in our setup. Instead, we numerically solve the opti-
cal Bloch equations to obtain a fit function for the modulated fluorescence intensity (see
Appendix B).

Figure 4.41 shows the micromotion of a single ion measured with the photon correlation
method. The measurement was performed in parallel with the position shift measurement.
The ion was illuminated with the radial cooling beam (see Figure 4.24) which propagates
along ucool = 1

2(ey − ex) − 1√
2ez. Note that a vertical displacement of the ion (along

(ex + ey)/
√

2) causes horizontal excess micromotion (along (ey − ex)/
√

2). This is illus-
trated in Figure 4.42 (a). The laser was red-detuned from the cooling transition by 9.5 MHz.
A saturation parameter of around s = 1.4 was measured by varying the cooling laser in-
tensity and monitoring the change in emitted fluorescence intensity. At each compensation
electrode voltage, a photon-correlation histogram was recorded and the modulation index
β was extracted by fitting the theory function to the data. The modulation is minimized
at a compensation electrode voltage of 19.5 V.
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Figure 4.41: Micromotion modulation index β for different compensation electrode voltages
measured with the photon-correlation method. The RF electric field amplitude along
the cooling laser beam is calculated using Equation 4.35. The insets show correlation
signals corresponding to the indicated data points. The modulation is minimized for a
compensation electrode voltage of 19.5 V.
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Figure 4.42: Illustration of excess micromotion in a linear Paul trap. (a) Axial view.
The micromotion vectors uemm(t = 0) are shown as black arrows for different vertical ion
positions. The grey arrows show how the micromotion components along the trap axes ex

and ey add up to give horizontal micromotion. (b) Top view. The axial and horizontal
micromotion components are shown as grey arrows. There exists a vertical ion position
where the two components add up such that uemm · ucool = 0.

This does not agree with the optimum voltage of 14.18 V obtained from the position shift
measurement. At this point a modulation index of β = 0.64 is measured which corresponds
to a residual RF electric field amplitude of Ẽrf ·ucool = 514 V/m. As mentioned above there
are two mechanism that can cause residual RF electric fields that are not associated with
the ion being shifted from the center of the trap. The first is a phase mismatch between
the RF electrodes. This creates an effective field which is directed along the connection
line of the two RF electrodes (ex) and which is out of phase with respect to the trapping
field [48]. This contribution therefore does not vanish at any equilibrium position of the
ion which disagrees with our observations.

The disagreement between the two measurement methods can however be explained
by a position independent axial component of the residual RF electric field. Shifting
the ion vertically from the center of the trap leads to horizontal micromotion that adds
to the axial component. As shown in Figure 4.42 (b), the vector sum of the axial and
horizontal micromotion components can be such that uemm · ucool = 0. The ion then
performs micromotion perpendicular to the cooling laser beam which minimizes β. We
believe that this is the reason why we observe minimal fluorescence modulation at Ucomp =
19.5 V. At Ucomp = 14.18 V the micromotion is expected to be only along the trap axis.
The axial component of the residual RF electric field can then be estimated to be

Ẽrf · ez ≈
√

2Ẽrf · ucool =
√

2 × 514 V/m = 727 V/m. (4.36)
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We have used a finite element analysis software55 (see subsection 4.1.2) to study the axial
RF electric field introduced by imperfect alignment of the trap electrodes. We found that
the observed axial RF electric field could for example be created by rotating one of the RF
electrodes by less than 1◦ with respect to the trap axis (see Figure 4.43). Even though our
trap electrodes were carefully aligned under a microscope during assembly, deviations on
this scale cannot be excluded.
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Figure 4.43: Simulated effect of rotating one of the trap electrodes on the axial RF electric
field. The simulation is performed for an RF voltage of 100 V which is a typical value in
our setup. In the inset the rotation angle is set to 5◦ to make the effect more visible.

Effects on He+ spectroscopy

We plan to drive the 1S-2S two-photon transition in He+ in a Doppler-free way using
counter-propagating pulses (see chapter 3). Micromotion is therefore not expected to
cause modulation sidebands on the spectroscopy signal. However, the excess micromotion
increases the mean square velocity of the ions which gives rise to a relativistic second-order
Doppler shift of [150]

∆νD2 = −ν ⟨Ekin,emm⟩
mHec2 = −ν

(
Q

2mHecΩ
Erf

)2
, (4.37)

where we have used Equation 4.31 in the last step. ν is the 1S-2S transition frequency,
and mHe is the mass of a helium ion.

55COMSOL Multiphysics.
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Furthermore, the ion experiences a nonzero mean square electric field ⟨E2⟩ = Erf/2
which affects the atomic states. First, it leads to a second-order Stark shift of [150]

∆νS = σS⟨E2⟩ = σS
E2

rf
2 , (4.38)

where σS is the Stark shift constant. For the 1S-2S transition in He+, we have σS =
0.005 641 Hz m2/V2 [95]. The Stark shift and the second-order Doppler shift are both
proportional to E2

rf and have opposite signs. The two effects can therefore be made to
cancel each other by choosing the proper value for the trap frequency Ω. This condition is
achieved for 4He+ at Ω = 2π × 11.98 MHz and for 3He+ at Ω = 2π × 15.97 MHz.

A peculiar feature of hydrogen-like systems is that the 2S1/2 state and the 2P1/2 state
are only separated by the Lamb shift which is 14.0 GHz in 4He+ [151]. Electric fields
therefore lead to a significant mixing of the two states. The 2P1/2 state has a lifetime
of only 100 ps [28] since it can decay to the 1S ground state via the emission of a single
photon. The mixing therefore significantly reduces the lifetime of the 2S1/2 state. The
lifetime against this quenching process is [95]

τ ′ = η

⟨E2⟩
= 2η
E2

rf
, (4.39)

where η = 158 sV2/m2. The 2S1/2 state has a natural lifetime of τ = 1.899 ms [14]. As a
result the total decay rate of the 2S1/2 state is

Γ2S = 1
τ

+ 1
τ ′ = 1

τ
+ E2

rf
2η . (4.40)

The expected line shifts and broadening in our experiment are shown in Figure 4.44. The
axial residual RF electric field given in Equation 4.36 shifts the resonance frequency by
around 1.4 kHz. The 1S-2S transition frequency in He+ can be calculated with an estimated
uncertainty of 70 kHz [12]. The micromotion line shift is significantly smaller and therefore
does not increase the required search range for finding the line. The decay rate is increased
from Γ = 2π × 84 Hz to Γ = 2π × 350 Hz. The decay and photoionization of the 2S state
are competing processes. As discussed in section 3.3, the effect of an increased decay rate
depends on the available laser power. For low power levels it is expected to significantly
reduce the ionization rate, whereas for high power levels the dynamics are essentially
unaffected. While the increased decay rate broadens the resonance line, the off-resonant
ionization rate does not increase due to the much lower overall rate (see Figure 3.5). The
broadening is therefore not expected to be useful for locating the line.

If the micromotion effects turn out to be limiting factors in the future, a different
trap design should be used. For example, the group of T. Mehlstäubler at the PTB56 has
designed traps that are optimized for low amounts of micromotion [152]. Their design is
based on stacked laser-cut AlN ceramic wafers with manufacturing tolerances below 10 µm.

56Physikalisch-Technische Bundesanstalt, Braunschweig, Germany.



118 4. Ion trap setup

0

1000

2000
∆
ν D

2
+

∆
ν S

(H
z)

0 200 400 600 800 1000

RF electric field amplitude (V/m)

0

200

400

600

Γ
2
S
/2
π

(H
z)

Figure 4.44: Expected line shift (top) and broadening (bottom) due to micromotion. The
shift is calculated using Equations 4.37 and 4.38, and the broadening using Equation 4.40.
The dashed orange line shows the estimated axial RF electric field amplitude in our trap.

They have demonstrated an axial RF electric field of less than 80 V/m over an entire 1 mm
long segment of the trap at an RF amplitude of 800 V. For comparison, our trap was driven
with an RF amplitude of only 119 V and suffers from an almost 10 times larger axial RF
electric field.



Chapter 5

Detecting individual dark ions

In our He+ spectroscopy experiment, the production of He2+ ions will be the signal for
the successful excitation of the 1S-2S transition. While it is straightforward to count laser
cooled trapped ions by fluorescence imaging, detecting the number of dark ions embedded
and sympathetically cooled in a mixed ion crystal is more challenging.

In this chapter we demonstrate a method to track the number of dark ions in real
time with single-particle sensitivity. We demonstrate the scheme by detecting H+

2 and H+
3

ions embedded in a Be+ ion crystal. Our method allows observing the generation and
destruction of individual ions simultaneously for different types of ions. Since H+

2 and
He2+ have the same charge-to-mass ratio, their motional dynamics are identical in an ion
trap. The detection of H+

2 therefore serves as a test for the detection of He2+. Besides
high-resolution spectroscopy on dark ions, another application is the detection of chemical
reactions in real time with single-particle sensitivity. The contents of this chapter have
been published in Physical Review A [153]. The manuscript has been edited to fit into the
structure of this thesis.

5.1 Introduction
While the number of laser cooled ions can be easily measured by fluorescence imaging,
identification and counting of the non-fluorescing dark ions is more difficult. One method
is to eject the ions from the trap and to accelerate them onto a detector in an electric field.
The different ion species can be distinguished by their arrival times [154–157]. While this
method allows a quantitative measurement of the number of ions of each species, it has
the disadvantage that it is destructive, and a new ion crystal has to be prepared after each
measurement.

In linear Paul traps lighter ions are more tightly confined than heavier ions (see Equa-
tion 2.20). Lighter sympathetically cooled ions therefore form a dark region in the center
of the fluorescence image of an ion crystal consisting of a heavier coolant species (see
Figure 4.34). The number of dark ions can then be obtained by comparing experimental
images with simulated ones [158–160]. This method is nondestructive, and the ion im-



120 5. Detecting individual dark ions

ages can be acquired quickly and post-processed later. However, different dark ion species
cannot be distinguished.

Instead, secular excitation has been used for nondestructive detection of trapped ions.
In this method the secular motion of the ions, i.e. the harmonic motion in the time averaged
trap potential, is excited resonantly by applying an additional oscillating electric field. This
transfers energy into the motion of the surrounding coolant ions and thereby increases their
temperature. Due to the temperature dependence of the Doppler broadening, this leads to
a change in the amount of fluorescence that can be observed from the coolant ions. The
secular motion of the ions in three-dimensional Coulomb crystals has rich dynamics that can
complicate the analysis of the secular excitation spectra. For example, the frequencies of
the secular resonances are influenced by space charge effects and the mechanical coupling
between the ions [65, 161, 162]. The energy transfer to the coolant ions is expected to
increase with an increasing number of dark ions. Therefore, the fluorescence change induced
by motional excitation serves as a measure of the number of dark ions. However, the
relationship between the fluorescence change and the number of excited dark ions is in
general nonlinear and is influenced by various experimental parameters such as the strength
of the motional excitation, the geometry of the mixed ion crystal, and the intensity and
detuning of the cooling laser. Therefore, evaluating the number of dark ions quantitatively
is challenging and often requires intricate modeling and calibration of the signal using
molecular dynamics simulations [163, 164]. This problem has been limiting the usage of
the secular excitation method for highly precise spectroscopy so far.

In this chapter we show that by properly choosing experimental parameters, discrete
steps in the secular excitation signal can be observed that are identified with individual
dark ions leaving the trap or being generated within the trap. Hence such a signal is
auto-calibrating, and counting the number of ions gives the ultimate accuracy. The signal
does not have to be calibrated using a physical model of the secular excitation. Spurious
signals at other frequencies that may arise from motional coupling have no influence on
the counting process and can be safely ignored.

We experimentally demonstrate this method by resonantly exciting the radial motion
of H+

2 and H+
3 ions embedded in a laser cooled Be+ ion crystal. We observe concomitant

changes in the amount of fluorescence from the Be+ ions when the number of trapped H+
2

or H+
3 ions changes due to chemical reactions with neutral rest gas molecules.

Spectroscopy on dark ions requires a scheme for detecting that the target transition
is being excited. This can for example be achieved by monitoring that new ion species
are created by state-dependent photoionization [165] or resonance-enhanced multiphoton
dissociation [164, 166–168]. The reliable detection of single dark ions demonstrates that
this detection scheme can be single-event sensitive and that the spectroscopy will be limited
by quantum projection noise only. Nonlinearities in the signal intensity may introduce a
systematic frequency shift, especially when the spectrum consists of multiple overlapping
lines [164]. Accurate counting of the dark ions gives rise to a spectroscopy signal with
negligible nonlinearity.

Chemical reactions at ultracold temperatures can be investigated precisely for a small
number of atoms or ions after careful quantum-state preparation [169]. Our detection
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scheme can be employed to efficiently capture such events with single-particle sensitivity.

5.2 Experimental setup
In this experiment we operate the trap with an RF amplitude of around 120 V and an
endcap voltage of 400 V. For Be+ this results in a radial secular frequency of around
1.6 MHz, corresponding to a Mathieu stability parameter q ≈ 0.07, and an axial secular
frequency of 645 kHz. The single-particle radial secular frequency scales proportional to
the ion’s charge-to-mass ratio (see subsection 2.1.3). The theoretical values are 4.8 MHz
and 7.2 MHz for H+

3 and H+
2 , respectively.

The Be+ ions are laser cooled using two frequency components that are red-detuned
from the cooling transition by 130 MHz and 460 MHz. We found that adding the far-
detuned component makes the system more robust against losing the trapped ions when
strongly driving secular excitations. Both frequency components have similar intensities
of around Isat, where Isat = 765 W/m2 is the saturation intensity of the cooling transition
(see section 2.5). The cooling beam is aligned parallel to the trap axis and propagates
through the holes in the endcap electrodes.1

Be+ ions are loaded into the trap as described in section 4.6. We then turn on the
electron gun for 1 s with a current of about 95 µA. The electrons ionize some of the hydrogen
molecules from the residual gas in our vacuum chamber, and the resulting molecular ions
become embedded in the ion crystal.

Figure 5.1 (a) and (b) show typical fluorescence images of the ion crystals used in the
experiment. We believe that the asymmetric shape visible in Figure 5.1 (b) is due to
the imperfect alignment of the trap electrodes which also causes excess micromotion (see
section 4.7.3).

5.3 Secular scans
In order to measure the radial secular frequencies of the trapped ions, we excite their
motion by applying a sinusoidal voltage to the compensation electrode. We sweep the
frequency range between 2 MHz and 10 MHz in 500 steps and for each frequency collect
photon counts with one of the PMTs for 10 ms. This is slow enough that the ion motion
reaches steady state for each frequency point. Figure 5.2 shows a typical resulting secular
spectrum. Two peaks at 4.6 MHz and 7.1 MHz can be observed which we attribute to H+

3
and H+

2 ions, respectively. As described in subsection 4.1.4, the compensation electrode is
low-pass filtered with a 1 nF capacitor and is not impedance matched to the 50 Ω output
impedance of the function generator that produces the excitation signal. This makes the
electric field amplitude at the position of the ions frequency dependent. In addition, the
efficiency of the motional excitation might be different for H+

3 and H+
2 ions. We therefore

1We do not use the radial cooling beam for three-dimensional ion crystals since the radial micromotion
leads to strong modulation sidebands that impede laser cooling.
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(a)

100 µm

(b)

100 µm

(c)

(d)
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Figure 5.1: Fluorescence images of an ion crystal consisting of around 2000 Be+ ions with
a few embedded H+

2 and H+
3 ions, horizontal (a) and vertical (b) view. (c) Coulomb crystal

containing 2000 Be+ ions (red spheres) and 5 H+
2 ions (light blue spheres) obtained by the

molecular dynamics simulation. (d) Simulated ion image for the crystal shown in (c) at
10 mK.
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Figure 5.2: Secular spectrum showing the presence of H+
2 and H+

3 ions embedded in the
Be+ coolant ions. The origin of the small peak close to 3 MHz has not been conclusively
identified.

use two different excitation amplitudes for the frequency range from 2 MHz to 5.5 MHz
and from 5.5 MHz to 10 MHz. The amplitudes are chosen to give roughly the same signal
strength per ion for the H+

2 and H+
3 resonances.

5.4 Detecting individual H+
2 and H+

3 ions
We then repeatedly perform secular scans over a period of a few minutes. Figure 5.3 shows
how the heights of the secular resonances change over time in a typical experiment.

We normalize the peak heights of each scan to the off-resonant scattering rate. This
compensates for small drifts in the cooling laser power and Be+ ion loss during the mea-
surement. The height of the H+

2 signal drops in steps until after around 360 s no peak is
visible anymore. The height of the H+

3 signal increases in steps that coincide with drops
of the H+

2 signal. We attribute this to individual H+
2 ions reacting with molecular hydro-

gen from the residual gas to form neutral hydrogen and H+
3 according to the exothermic

chemical reaction H+
2 + H2 → H+

3 + H [170]. The clearly visible steps in the signals show
that we are observing individual ions being destroyed or created within the Coulomb crys-
tal. Sometimes the H+

2 signal drops without a corresponding increase in H+
3 signal. One

possible explanation is that the H+
2 ion reacted with a different residual gas molecule such

as N2, O2, or H2O [171]. Another possibility is that the kinetic energy transferred to the
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Figure 5.3: Change of the fluorescence peak heights at the H+
2 (blue circles) and H+

3 (orange
squares) resonances over time. For each measurement the peak heights are normalized to
the off-resonant scattering rate. The stepwise changes of the peak heights are caused by
individual ions undergoing chemical reactions with residual gas molecules. Within each
step the peak heights scatter by much less than the step-to-step difference. Each secular
scan therefore allows a reliable determination of the ion numbers.

H+
3 molecule in the chemical reaction is large enough to sometimes allow the product to

escape from the trap. Rate constants for the chemical reactions between H+
2 and typical

residual gas molecules are in the range of 2–7 × 10−9 cm3 s−1 [170, 171]. An exponential fit
to the H+

2 ion number yields a total decay rate of 0.006 s−1 which corresponds to a residual
gas pressure in the range of 4 × 10−11 mbar to 1 × 10−10 mbar, in rough agreement with the
pressure of 4 × 10−11 mbar indicated by the vacuum gauge of the ion trap chamber. The
number of H+

3 ions subsequently drops in similar steps over the time scale of a few minutes.
We attribute this to proton transfer reactions of the type H+

3 + X → HX+ + H2 which are
possible with a number of residual gas molecules such as N2, CO, CO2, and H2O [172].

5.5 Molecular dynamics simulations

One striking feature of Figure 5.3 is that the fluorescence peak heights are nearly linear
in the number of dark ions. We use the LAMMPS molecular dynamics code [173, 174] to
further investigate this behavior. The ion trap is modelled as the sum of an oscillating and
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a static quadrupole electric field (see section 2.1):

E(r, t) = Urf cos(Ωt) + Udc

r2
0

(yey − xex) + κ
Uec

2z2
0
(xex + yey − 2zez), (5.1)

where Urf and Ω are the amplitude and frequency of the trap radio frequency drive, r0 is
the radial size of the trap (see subsection 4.1.2), Udc is the static offset voltage between the
two diagonal pairs of trap electrodes (see subsection 4.1.4), Uec is the voltage applied to the
endcap electrodes, z0 is the distance between the endcap electrodes and the trap center,
and κ is a geometrical factor that depends on the trap geometry (see subsection 4.7.2).
ex, ey, and ez are orthogonal unit vectors that define the Cartesian coordinate system as
shown in Figure 4.1. Table 5.1 shows the parameters used in our simulations.

Table 5.1: Parameters used in the molecular dynamics simulations.
Parameter Value
Urf 121 V
Ω 2π × 66.05 MHz
r0 0.469 mm
Udc 0.1 V
Uec 400 V
z0 3.5 mm
κ 0.0469
∆1 −2π × 130 MHz
∆2 −2π × 460 MHz
s1 1
s2 1
NBe 2000

The lifetime of the excited state of the Be+ cooling transition is 8.9 ns (see section 2.5).
This is much shorter than the axial secular oscillation period of the Be+ ions in the trap
(1.6 µs). In this unresolved sideband regime, we model the laser cooling as a velocity-
dependent average force (see section 2.2) that only acts on the Be+ ions:

Fc(vz) =
2∑

j=1
ℏkΓ sj/2

1 + sj + (∆j−kvz

Γ/2 )2
ez, (5.2)

where ∆j and sj are the detunings and the saturation parameters of the two cooling laser
frequency components (see Table 5.1), Γ = 2π × 18 MHz is the FWHM linewidth of the
Be+ cooling transition, k = 2π/(313 nm) is the cooling laser wave number, and vz is the
z-component of the ion velocity.

The secular excitation is implemented as an oscillating electric field perpendicular to
the trap axis:

Eex(t) = Eex cos(Ωext)
1√
2

(ex + ey), (5.3)
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where Eex and Ωex are the amplitude and frequency of the excitation.
The fluorescence signal measured in the experiment is proportional to the rate of pho-

tons scattered by the Be+ ions:

R(t) =
NBe∑
i=1

2∑
j=1

Γ sj/2
1 + sj +

(
∆j−kvz,i(t)

Γ/2

)2 , (5.4)

where NBe is the number of Be+ ions, and vz,i is the z-component of the velocity of the ith
Be+ ion.

Ion numbers and temperatures

We use the simulations to determine the number of trapped ions and their temperature.
For a given number of ions, a simulated ion crystal is initialized as follows. First, we
randomly place all ions in the simulation volume. Then, they are brought close to an
equilibrium configuration by using the potential energy minimization routine of LAMMPS
in a static pseudopotential as described in [174]. With that the H+

2 and H+
3 ions are

located close to the trap axis because the pseudopotential is deeper for them than for the
Be+ ions. A resulting ion configuration is shown in Figure 5.1 (c). The ions are brought
to a finite temperature by coupling their motion to a Langevin bath [174]. We generate
simulated fluorescence images, taking into account the motion of the ions and the spot
size and depth of field of the imaging objective. We then estimate the number of trapped
ions in the experiment and their temperature by comparing the simulated images with the
experimental ones [65, 158–160]. A good agreement is obtained between experimental and
simulated images for around 2000 Be+ ions at 10 mK mixed with a few dark ions as shown
in Figure 5.1 (d). Since micromotion has no visible effect on the simulated ion images, we
found it sufficient to perform these simulations in the pseudopotential approximation.

Secular excitation spectra

For each number of H+
2 and H+

3 ions, a simulated ion crystal is initialized as described
above. The pseudopotential is then replaced by the trap electric field given in Equation 5.1.
Instead of the Langevin bath, laser cooling according to Equation 5.2 is applied to the Be+

ions. The disordered secular motion of the many interacting ions in large Coulomb crystals
behaves like the motion of a gas in thermal equilibrium and can therefore be assigned a
temperature [65]. The laser cooling force damps this motion until the ions reach a secular
temperature below 1 mK.

Then the secular excitation field given in Equation 5.3 is turned on, and the ion tra-
jectories are simulated for 10 ms. The secular excitation heats up the secular motion until
a thermal equilibrium is reached after a few ms. We apply an artificial damping force to
the motion of the H+

2 and H+
3 ions during the first 3 ms of the simulation. This prevents

the ion temperature from rising too quickly which occasionally leads to numerical insta-
bilities in our simulation. The fluorescence signal observed in the experiment is simulated
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by averaging the Be+ scattering rate calculated using Equation 5.4 over the last 5 ms of
the simulation. The simulation is then repeated with the same initial ion crystal for a
range of secular excitation frequencies in order to obtain a secular spectrum. At typical
secular temperatures reached in the experiment and simulations, the ions diffuse through
the crystal on a ms time scale [65, 66]. This provides enough averaging such that one run
is sufficient for each combination of ion numbers and excitation frequencies.

Figure 5.4 (a) and (b) show experimental secular excitation spectra for different num-
bers of H+

3 and H+
2 ions, and Figure 5.4 (c) and (d) show the corresponding simulated

spectra. The stepwise change of the fluorescence peak height for different numbers of ions
is reproduced in the simulations. Both the simulation and the measurement suggest that
the change in the amount of fluorescence is roughly proportional to the number of dark
ions that are being excited at their secular frequency.
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Figure 5.4: Experimental secular excitation spectra for (a) 0–3 H+
3 ions and (b) 0–4 H+

2
ions. (c) and (d) are spectra obtained from molecular dynamics simulations with 2000
Be+ ions and the same numbers of H+

2 and H+
3 ions as in the experiment. The simulated

excitation amplitudes are 2.9 V/m for the H+
3 resonance and 2.5 V/m for the H+

2 resonance.

The all-to-all Coulomb interaction between the ions makes simulating large ion crystals
computationally expensive. In our case simulating the system evolution for 10 ms takes
around one day on 8 CPU cores. We found that adding more cores did not speed up the
simulation due to communication overhead between the cores. We therefore performed
the simulations for the different excitation frequencies and ion numbers in parallel on a
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computer cluster.2

5.6 Theoretical description
We now derive a model for the dependence of the scattering rate at the secular resonance
frequency on the number of ions that are being excited. For a cycling cooling transition in
an atom at rest, the photon scattering rate is given by

w(∆) = sΓ/2
1 + s+

(
∆

Γ/2

)2 , (5.5)

where ∆ is the laser detuning, and s = I/Isat is the saturation parameter. During the
secular excitation, the temperature of the coolant ions increases to Ts, and the scattering
rate per Be+ ion is given by [164]

R(Ts) =
∫ ∞

−∞
w(∆ − kv)p(v, Ts)dv, (5.6)

where p(v, T ) =
√
mBe/ (2πkBT ) exp [−mBev

2/(2kBT )] is the Maxwell-Boltzmann distri-
bution. v is the velocity of the ion along the cooling laser beam, k is the cooling laser
wave number, and mBe is the Be+ mass. We assume that the coolant ion temperature Ts
during the secular excitation is determined by the balance between the heating due to the
motional excitation and the average laser cooling power. This condition is expressed as

NBepc(Ts) = Nexph, (5.7)

where NBe is the number of Be+ ions, and Nex is the number of dark ions that are being
excited. ph is the heating power per excited dark ion. Note that the average cooling power
per coolant ion pc(Ts) is temperature dependent because of the Doppler broadening of the
cooling transition:

pc(Ts) = −ℏk
∫ ∞

−∞
vw(∆ − kv)p(v, Ts)dv. (5.8)

We use the molecular dynamics simulations to confirm the validity of the underlying as-
sumptions of Equation 5.7. The first one is that the total heating power due to the secular
excitation is proportional to the number of H+

2 or H+
3 ions that are being resonantly ex-

cited. The second one is that the secular excitation is the only heating mechanism which
is balanced by the laser cooling power in steady state. The molecular dynamics simulation
allows us to access such thermodynamic quantities of the system that cannot directly be
measured in the experiment. The total heating power due to the excitation field is given
by

ph,tot(t) =
Nion∑
i=1

qivi(t) · Eex(t), (5.9)

2Operated by the Max Planck Computing and Data Facility (MPCDF).



5.6 Theoretical description 129

where Nion is the number of ions in the crystal, and qi and vi(t) are the charge and velocity
of the ith ion.

The total laser cooling power is

pc,tot(t) = −
NBe∑
i=1

vi(t) · Fc[vi(t) · ez]. (5.10)

As for the scattering rate, we obtain steady-state values of the heating and cooling powers
by averaging over the last 5 ms of each simulation. Figure 5.5 shows the heating and
cooling powers during secular excitation at the H+

2 and H+
3 resonance frequencies for ion

crystals with 2000 Be+ ions and different numbers of H+
2 and H+

3 ions. The simulations
confirm the approximately linear dependence between the heating power and number of
ions. The simulations also show that the heating power is balanced by the laser cooling
and that the trapping field does not transfer a significant amount of energy to the ions
(RF heating [175]).
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Figure 5.5: Secular heating powers (dots) and laser cooling powers (crosses) when exciting
mixed ion crystals at the H+

2 (left) and H+
3 (right) resonance frequencies. The solid lines

are linear fits to the heating powers. The simulated excitation amplitudes are 2.9 V/m for
the H+

3 resonance and 2.5 V/m for the H+
2 resonance.

The relative fluorescence peak heights of the secular resonances shown in Figure 5.3
correspond to R(Ts)/R(T0) where T0 is the equilibrium temperature of the Be+ ions in
the absence of heating due to secular excitation. Under our experimental conditions, T0
is around 10 mK. For simplicity we use T0 = 0 K which introduces a marginal (∼ 2 %)
difference in the scattering rate. It is difficult to precisely estimate the heating rate ph from
the experimental parameters. We therefore treat α = ph/NBe as a free parameter in our



130 5. Detecting individual dark ions

0 1 2 3 4
Number of ions

1.0

1.2

1.4

1.6

1.8

2.0

2.2
R

el
at

iv
e

fl
u

or
es

ce
n

ce
p

ea
k

h
ei

gh
t

Figure 5.6: Average peak heights of the H+
2 (blue circles) and H+

3 (orange squares) secular
resonances. The error bars show the standard error of the mean. The solid and dashed
lines are fits of our model curve R(Ts)/R(T0) to the H+

2 and H+
3 data, respectively. Separate

fits are performed for the H+
2 and H+

3 resonances since the secular excitation strength is
different for the two species, and two different fit parameters αH+

2
and αH+

3
were necessary.

model. We evaluated R(Ts)/R(T0) numerically and determined α to best reproduce the
experimental data. No other fit parameters were used. The results are shown in Figure 5.6
for different numbers of H+

2 and H+
3 ions. For our parameters the model predicts a nearly

linear dependence of the scattering rate on the number of dark ions which agrees with the
experimental observations.

With a larger number of dark ions, the model predicts that the fluorescence peak
height starts to saturate, and the fluorescence steps become smaller accordingly. We have
conducted experiments for a larger number of dark ions and confirmed that up to eight
dark ions can be reliably counted under our experimental conditions. Additional molecular
dynamics simulations with different numbers of dark/coolant ions and different dark-ion
species suggest that our method is robust for a wide range of experimental parameters.

In conclusion, we have demonstrated that the secular excitation technique can be used
to detect dark ions embedded in laser-cooled ion Coulomb crystals with single-particle
resolution. Secular excitation only relies on the Coulomb interaction between the different
ion species. We therefore believe that this method could be used for single-particle sensitive
detection of a wide range of atomic or molecular ions that do not possess suitable cycling
transitions for fluorescence detection.



Chapter 6

A low-noise driving laser for high
harmonic generation

The output of any real laser has a certain amount of amplitude and phase noise which
influences the emitted spectrum. In this chapter we first discuss how laser noise affects
spectroscopy experiments. Our XUV frequency comb is generated from an infrared laser us-
ing high harmonic generation (HHG). We will see that in order to achieve narrow linewidths
in the XUV, it is critical to start with a driving laser with extremely low phase noise. We
have therefore developed a laser system based on an Yb:KYW mode-locked oscillator that
is tightly phase locked to a cavity-stabilized external-cavity diode laser (ECDL). The sec-
ond part of the chapter describes the design and characterization of the cavity-stabilized
ECDL. We have developed a new technique for characterizing the high-frequency phase
noise of this laser system. The corresponding parts of the chapter were published in an
article in Optics Letters [176]. In the last part of the chapter, the driving laser system for
the HHG and its stabilization are described.

6.1 Laser noise in spectroscopy experiments
Figure 6.1 shows the spectrum of a beat note between the outputs of two cavity-stabilized
ECDLs that are used for hydrogen spectroscopy at MPQ [177, 178]. These lasers have
full width at half-maximum (FWHM) linewidths of around 1 Hz. The spectrum contains
a narrow carrier whose apparent width is only given by the resolution bandwidth of the
spectrum analyzer. Surrounding the carrier there is a broad “pedestal” that is typical for
the spectrum of diode lasers. As we will show below, this is mainly caused by high-frequency
phase noise. The noise pedestal affects spectroscopy experiments differently depending on
the linewidth of the transition. An accurate measurement of a broad transition requires
finding the line center within a small fraction of its width (see for example [13]). By beating
the spectroscopy laser with a frequency comb, the number of optical cycles per time can be
counted, corresponding to the mean frequency of the carrier. As long as the signal-to-noise
ratio is sufficient for unambiguous tracking of the optical phase, the high-frequency noise
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Figure 6.1: Beat note between the outputs of two ECDLs which are stabilized to inde-
pendent reference cavities and have subhertz linewidths (blue solid trace) recorded with
a resolution bandwidth of 20 kHz. The narrow carrier (resolution bandwidth limited) and
broad phase-noise pedestal are clearly visible. The frequency axis is shown relative to the
carrier frequency of 2.968 GHz. The orange dashed line shows the expected beat note after
filtering the output of both lasers through a cavity with an FWHM linewidth of 6.55 kHz
(see subsection 6.2.4).

quickly averages out in the carrier frequency measurement. The frequency measurement
is therefore mostly unaffected by the shape of the noise pedestal. On the other hand,
the observed line shape is a convolution of the laser spectrum with the atomic response.
Correlated amplitude and phase noise can lead to an asymmetric noise spectrum [179]. In
this case the center of gravity of the laser spectrum is different from the carrier frequency
which can lead to a systematic measurement error [165].

The situation is different when spectroscopy is performed on a very narrow transition.
In this case high accuracy can be achieved without having to precisely locate the line
center within the linewidth. A potential asymmetry in the noise spectrum is therefore less
important. However, if the transition is much narrower than the noise spectrum, only the
carrier can contribute to driving the excitation. As we will see below, the fraction of power
that is “lost” to the noise pedestal can be substantial, especially when harmonics of the
laser output are being generated.
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6.1.1 Amplitude and phase noise basics
We treat the output of a single-mode laser as a sinusoidal oscillation with amplitude and
phase noise. The time-dependent part of the electric field emitted by the laser can then
be written as [27, p. 47]

E(t) = [E0 + ∆E0(t)] cos[ω0t+ ϕ(t)], (6.1)

where ω0 = 2πν0 is the unperturbed carrier frequency of the laser. The amplitude exhibits
random fluctuations ∆E0(t) around E0, and the argument of the cosine function contains
the phase noise term ϕ(t).

Amplitude noise

We start our discussion by analyzing pure harmonic amplitude modulation. The laser
output becomes

E(t) = E0[1 +M cos(ωmt)] cos(ω0t), (6.2)
where M is the modulation index, and ωm is the modulation frequency. By using the
trigonometric relation cos(α) cos(β) = [cos(α + β) + cos(α − β)]/2, we can rewrite Equa-
tion 6.2 as

E(t) = E0

{
cos(ω0t) + M

2 cos[(ω0 + ωm)t] + M

2 cos[(ω0 − ωm)t]
}
. (6.3)

The amplitude modulation adds a pair of sidebands to the laser spectrum that are located
at ±ωm from the carrier and have relative amplitudes M/2. The power contained in
the sidebands is M2/2 times the carrier power [27, p. 17]. In a real laser the amplitude
noise is typically due to many small perturbations with different frequencies that can be
characterized by a Fourier spectrum [27, pp. 17–18]. The output power of laser sources
usually fluctuates only by a small fraction of the average power. Since the HHG process
is highly nonlinear, it increases the relative amplitude noise. Typically, this results in
root mean square power fluctuations of a few percent of the average power in the XUV
output [32]. Therefore, even in the XUV, the amplitude noise sidebands contain much
less power than the carrier. Our spectroscopy target, the 1S-2S transition in He+, has a
natural linewidth of 84 Hz [14]. We do not expect that the amplitude noise sidebands have
a large effect on spectroscopy of such a narrow line. In the following, amplitude noise will
therefore be neglected.

Noise power spectral densities

Noise is by definition random and therefore has to be described using statistical methods.
We want to model a fluctuating physical quantity b(t) (phase, frequency, voltage, . . . ).
One useful statistical property of b(t) is its autocorrelation function

Rb(τ) = lim
T →∞

1
2T

∫ T

−T
b(t+ τ)b(t)dt. (6.4)
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The Wiener-Khintchine theorem states that Rb(τ) and the power spectral density SII
b (f)

form a Fourier transform pair [27, pp. 57–58]:

SII
b (f) =

∫ ∞

−∞
Rb(τ)e−i2πfτdτ, (6.5)

Rb(τ) =
∫ ∞

−∞
SII

b (f)ei2πfτdf. (6.6)

To get an intuition for the meaning of the power spectral density, we insert τ = 0 in
Equation 6.6 and Equation 6.4 and obtain [27, pp. 55–56]

Rb(0) =
∫ ∞

−∞
SII

b (f)df = lim
T →∞

1
2T

∫ T

−T
b(t)2dt. (6.7)

If we integrate the power spectral density over all frequencies, we obtain the mean square
value of b(t) (Parseval’s theorem). Hence, the power spectral density quantifies the mean
square fluctuations of a signal contained in a certain frequency band. It is therefore mea-
sured in units of [unit of b]2/Hz.1

If b(t) can be described as a stationary process, i.e. its distribution is time-independent,
the autocorrelation is an even function. Then the power spectral density is also even. SII

b (f)
is defined for Fourier frequencies −∞ < f < ∞ and is therefore called the two-sided power
spectral density. However, this representation is somewhat redundant since the positive
and negative frequency parts contain the same information. It is therefore common to
define the one-sided power spectral density

SI
b(f) = 2SII

b (f), (6.8)

which is only defined for 0 ≤ f < ∞. Unfortunately, in the literature it is not always clear
which definition is used. To avoid confusion, in the following we will use the superscripts
I for one-sided and II for two-sided power spectral densities.

If our signal is spectrally filtered such that its Fourier frequencies are limited to a range
between fmin and fmax, we can calculate the resulting mean square of b(t) by integrating
over the one-sided power spectral density:

〈
b(t)2

〉
bandlim.

=
∫ fmax

fmin
SI

b(f)df. (6.9)

The power spectral density can also be defined via the square magnitude of the Fourier
spectrum of b(t):

SII
b (f) = lim

T →∞

1
2T

∣∣∣∣∣
∫ T

−T
b(t)e−i2πftdt

∣∣∣∣∣
2

. (6.10)

The definitions in Equation 6.5 and Equation 6.10 are equivalent for reasonably well be-
haved noise processes [27, p. 69].

1Sometimes a power spectral density is specified by its square root value. In this case the unit becomes
[unit of b]/

√
Hz.
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Phase and frequency noise power spectral density

When discussing the frequency stability of a laser, the fluctuating quantity of interest is the
phase term ϕ(t) in Equation 6.1. The phase noise power spectral density is then defined
using Equation 6.4 and Equation 6.5:

SII
ϕ (f) =

∫ ∞

−∞
Rϕ(τ)e−i2πfτdτ, (6.11)

Rϕ(τ) = lim
T →∞

1
2T

∫ T

−T
ϕ(t+ τ)ϕ(t)dt. (6.12)

SII
ϕ (f) is measured2 in units of (rad)2/Hz.

It is often useful to work with frequency fluctuations instead of phase fluctuations. The
instantaneous frequency of the laser output is given by the time derivative of the argument
of the cosine function in Equation 6.1:

ν(t) = 1
2π

d

dt
[ω0t+ ϕ(t)] = ν0 + 1

2π
dϕ(t)
dt

. (6.13)

We can identify the frequency fluctuations

∆ν(t) = 1
2π

dϕ(t)
dt

. (6.14)

The frequency noise power spectral density is defined analogous to the phase noise power
spectral density:

SII
ν (f) =

∫ ∞

−∞
Rν(τ)e−i2πfτdτ, (6.15)

Rν(τ) = lim
T →∞

1
2T

∫ T

−T
∆ν(t+ τ)∆ν(t)dt. (6.16)

SII
ν (f) is measured in units of Hz2/Hz.

An important property of the Fourier transform is that a derivative in the time domain
corresponds to a multiplication with 2πf in the frequency domain. By inserting Equa-
tion 6.14 into Equation 6.10 and integrating by parts, we find the relationship between the
frequency and phase noise power spectral densities:

SII
ν (f) = lim

T →∞

1
2T

∣∣∣∣∣
∫ T

−T
∆ν(t)e−i2πftdt

∣∣∣∣∣
2

= lim
T →∞

1
2T

∣∣∣∣∣ 1
2π

∫ T

−T

dϕ(t)
dt

e−i2πftdt

∣∣∣∣∣
2

= f 2 lim
T →∞

1
2T

∣∣∣∣∣
∫ T

−T
ϕ(t)e−i2πftdt

∣∣∣∣∣
2

= f 2SII
ϕ (f). (6.17)

Since the two quantities have the same physical origin, they can be directly converted into
each other.

2Since the radian is dimensionless, one could argue that it is not really a unit. However, it serves to
remind us that a quantity represents a phase difference or an angle.
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Optical spectrum with phase or frequency noise

We now want to know how a given phase or frequency noise power spectral density influ-
ences the optical spectrum of our laser. The electric field of a laser output with negligible
amplitude noise can be written in complex representation as

E(t) = E0e
i[2πν0t+ϕ(t)]. (6.18)

The autocorrelation function of the field can then be related to the phase noise power
spectral density [27, pp. 64–65]:

RE(τ) = ⟨E(t+ τ)E∗(t)⟩ = E2
0e

i2πν0τe−
∫∞

0 SI
ϕ(f)[1−cos(2πfτ)]df , (6.19)

where ⟨⟩ signifies temporal averaging.
We obtain the power spectral density of the laser output by taking the Fourier transform

of the autocorrelation function. The result is

SII
E(ν − ν0) = E2

0

∫ ∞

−∞
e−i2π(ν−ν0)τe−

∫∞
0 SI

ϕ(f)[1−cos(2πfτ)]dfdτ (6.20)

= E2
0

∫ ∞

−∞
e−i2π(ν−ν0)τe

−2
∫∞

0 SI
ν(f) sin2(πfτ)

f2 df
dτ, (6.21)

where we used Equation 6.17 to obtain the second line.
It is instructive to analyze the laser spectrum for the example of filtered white frequency

noise [180, 181]:

SI
ν(f) =

h0, f ≤ fc

0, f > fc

, (6.22)

where h0 is the noise level, and fc is the cutoff frequency. Inserting into Equation 6.21
gives

SII
E(ν − ν0) = E2

0

∫ ∞

−∞
e−i2π(ν−ν0)τe

−2h0
∫ fc

0
sin2(πfτ)

f2 df
dτ. (6.23)

In the limit fc → ∞ (white frequency noise), the integral in the exponent has an analytical
solution: ∫ ∞

0

sin2(πfτ)
f 2 df = π2

2 |τ | . (6.24)

With this, Equation 6.23 can be evaluated. The result is

SII
E(ν − ν0) = E2

0
2

h0(
πh0

2

)2
+ (ν − ν0)2

. (6.25)

A laser with pure white frequency noise has a Lorentzian line shape with an FWHM of
πh0. A physical example for this is the quantum noise caused by the fluctuating photon
number in a laser cavity. It can be shown that this leads to a white frequency noise [182]:

SI
ν(f) = 1

(2π)2
hν0ltot

T 2
RPint

, (6.26)
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where hν0 is the photon energy, ltot is the total power loss per cavity round trip, TR is
the cavity round-trip time, and Pint is the intracavity power. The FWHM linewidth of the
empty laser cavity is

∆νc = 1
2π

ltot

TR

. (6.27)

If the total power loss per cavity round trip is dominated by the transmission through
the laser output coupler mirror, the output power is given by P = ltotPint. The resulting
FWHM linewidth is

∆νFWHM = πhν0

P
∆ν2

c . (6.28)

This is equivalent3 to the famous Schawlow-Townes formula that was originally derived by
making an analogy with the linewidth of masers operating in the microwave range [184].

The other limit is fc → 0. In this case we get∫ fc

0

sin2(πfτ)
f 2 df ≈ π2τ 2fc. (6.29)

After inserting into Equation 6.23, we get

SII
E(ν − ν0) = E2

0√
2πh0fc

e
− (ν−ν0)2

2h0fc . (6.30)

In this case the line shape is Gaussian with an FWHM linewidth of 2
√

2 ln(2)h0fc.
Domenico et al. have numerically studied how the linewidth of the spectrum given by

Equation 6.23 changes as a function of fc for a fixed frequency noise level h0 [181]. Their
result is that for fc ≪ h0 the line is Gaussian and the width increases with increasing fc.
For fc ≫ h0 the spectrum becomes Lorentzian and the linewidth stops to increase.

They were then able to generalize the result to arbitrary frequency noise spectra. It
turns out that the frequency noise power spectral density can be separated into two re-
gions. They are delimited by the point where SI

ν(f) crosses the so-called β-separation line
8 ln(2)f/π2 as shown in Figure 6.2. In the first region the frequency noise level is large
compared to its Fourier frequency.4 This corresponds to large phase excursions at low
Fourier frequencies (slow phase/frequency noise) and leads to a Gaussian line shape. In
the second region the opposite is the case. The frequency noise level is small compared
to its Fourier frequency, corresponding to small phase excursions at high Fourier frequen-
cies (fast phase/frequency noise). This part of the frequency noise power spectral density
creates Lorentzian wings in the spectrum, but does not affect the FWHM linewidth. One
consequence of this is that the linewidth alone is not always a good measure for the spectral
purity of a laser.

3In the original Schawlow-Townes paper, the linewidths of the cavity and the emission are given as half
width at half maximum. Furthermore, it was later found that the result is only valid for lasers operating
below threshold and that the noise above threshold is smaller by a factor 2 [183].

4Note that frequency noise power spectral density has the unit Hz2/Hz and can therefore be set in
relation with a Fourier frequency in Hz.
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Figure 6.2: Illustration of the β-separation line concept [181]. The solid blue line shows
an example for a frequency noise power spectral density of a laser. It consists of a compo-
nent that scales with 1/f and a frequency-independent component that dominates at high
frequencies. The dashed orange line is the β-separation line 8 ln(2)f/π2. Only the blue
shaded part of the frequency noise power spectral density determines the laser linewidth.
The higher frequency components lead only to small and fast phase excursions and con-
tribute to the wings of the spectrum.

The FWHM linewidth is then given by [181]

∆νFWHM =
√

8 ln(2)A, (6.31)

where
A =

∫ ∞

1/T0
H[SI

ν(f) − 8 ln(2)f/π2]SI
ν(f)df (6.32)

is the mean square integrated frequency noise in the Fourier frequency range where it
exceeds the β-separation line (blue shaded area in Figure 6.2). H(x) is the Heaviside step
function that is defined as

H(x) =
1, x ≥ 0

0, x < 0
. (6.33)

T0 is a characteristic measurement time that limits the minimum Fourier frequency that
can be observed in an experiment. This could for example be the acquisition time of a
spectrum analyzer measuring a beat note signal, or the pulse separation in a Ramsey-type
spectroscopy experiment. At low Fourier frequencies, the frequency noise of oscillators often
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scales as SI
ν(f) ∝ 1/f (flicker frequency noise) or SI

ν(f) ∝ 1/f 2 (random walk frequency
noise) [27, pp. 59–60]. In this case the integral in Equation 6.32 diverges for T0 → ∞,
leading to an infinite linewidth. The underlying reason for this is that the frequency of
a free-running oscillator can in principle drift by an arbitrary amount if one just waits
long enough. Consequently, the observed oscillator linewidth depends on the application,
and many possible definitions exist (see [185] for a detailed discussion of this issue). The
β-separation line is one sensible definition that allows comparing different measurements.
For large values of T0, the linewidth scales as ∆νFWHM ∝

√
ln(T0) for 1/f noise and as

∆νFWHM ∝
√
T0 for 1/f 2 noise [181]. Due to this relatively slow divergence, linewidth

measurements are often not very sensitive to the measurement time.
With the β-separation line model, we can understand the beat note between the outputs

of the two cavity-stabilized ECDLs shown in Figure 6.1. At low Fourier frequencies, the
feedback loops stabilizing the lasers have very high gain and tightly lock the laser outputs to
the cavity resonances. The low-frequency noise and hence the laser linewidths are therefore
determined only by the stability of the reference cavities. In order to avoid oscillations, the
gain of a feedback system has to drop below 0 dB before a phase delay of 180◦ is reached.
This limits the achievable feedback bandwidth to a few hundred kHz for these particular
laser systems. The high-frequency phase noise present in the output of the ECDLs can
therefore only partially be suppressed. This leads to broad wings in the spectrum that form
the noise pedestal. Even though the laser linewidths are only around 1 Hz, the pedestals
extend over several MHz and contain around 2 % of the total power.

Phase noise measurement

We can now analyze how the power spectral density of fast phase noise influences the
shape of the noise pedestal. As discussed above, slow phase noise contributes to the laser
spectrum with a Gaussian line shape that rapidly falls off at Fourier frequencies above the
linewidth. We introduce a cutoff Fourier frequency f0 that separates the narrow Gaussian
carrier from the broad phase noise pedestal. The fast phase noise power spectral density
is defined as [186]

SI
ϕ,f0(f) =

0, 0 < f < f0,

SI
ϕ(f), f ≥ f0

. (6.34)

We can approximate the spectrum of the pedestal, i.e. for |ν − ν0| > f0, by inserting
Equation 6.34 into Equation 6.20:

SII
E(ν − ν0) ≈ E2

0

∫ ∞

−∞
e−i2π(ν−ν0)τe

−
∫∞

f0
SI

ϕ(f)[1−cos(2πfτ)]df
dτ

= E2
0

∫ ∞

−∞
e−i2π(ν−ν0)τe−ϕ2

rms+Rϕ,f0 (τ)dτ, (6.35)

where
ϕrms =

√∫ ∞

f0
SI

ϕ(f)df (6.36)
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is the integrated fast phase noise, and

Rϕ,f0(τ) =
∫ ∞

f0
SI

ϕ(f) cos(2πfτ)df (6.37)

is the autocorrelation function of the fast phase noise. Note that Rϕ,f0(τ) ≤ Rϕ,f0(0) = ϕ2
rms

since SI
ϕ(f) is a positive function.

For small integrated fast phase noise, i.e. ϕ2
rms ≪ 1, Rϕ,f0(τ) therefore also has to be

small. We can then expand the second exponential in the integrand in Equation 6.35 up
to first order and get [27, p. 68]

SII
E(ν − ν0) ≈ E2

0

∫ ∞

−∞
e−i2π(ν−ν0)τ [1 − ϕ2

rms +Rϕ,f0(τ)]dτ

= E2
0 [(1 − ϕ2

rms)δ(ν − ν0) + SII
ϕ,f0(ν − ν0)], (6.38)

where we have used the integral representation of the Dirac delta distribution:

δ(ν − ν0) =
∫ ∞

−∞
e−i2π(ν−ν0)τdτ, (6.39)

and have introduced in analogy with Equation 6.11 the power spectral density of fast phase
noise:

SII
ϕ,f0(f) =

∫ ∞

−∞
Rϕ,f0(τ)e−i2πfτdτ. (6.40)

The spectrum described by Equation 6.38 consists of a carrier surrounded by symmetric
noise sidebands. Since the approximation only contains fast phase noise, the carrier is not
resolved and shows up as an infinitely narrow peak at ν = ν0. The sidebands are given
by the two-sided fast phase noise power spectral density SII

ϕ,f0(f) evaluated at f = ν − ν0.
This allows a direct measurement of this quantity using a spectrum analyzer. The power
spectral density in the upper or lower noise sideband is measured and normalized to the
carrier power. The result is called the single sideband phase noise5 L(f). For historic
reasons this quantity is commonly used to specify the spectral purity of oscillators. It is
usually displayed on a logarithmic scale in dBc/Hz with a frequency axis relative to the
carrier frequency. We can see from Equation 6.38 that in the low phase noise limit6

L(f) = SII
ϕ,f0(f) = 1

2S
I
ϕ,f0(f). (6.41)

5Note that the single sideband phase noise is equivalent to the two-sided fast phase noise power spectral
density.

6L(f) is measured in dBc/Hz and SII
ϕ,f0

(f) in (rad)2/Hz. Since power ratios (measured in dBc) and
phase angles (measured in rad) are both dimensionless, the conversion factor between these quantities in
Equation 6.41 is unity.



6.2 Cavity-stabilized continuous-wave laser 141

Frequency multiplication and carrier collapse

If the integrated fast phase noise is not small, we have to keep the higher-order terms in
the second exponential in the integrand in Equation 6.35 and get

SII
E(ν − ν0) ≈ E2

0e
−ϕ2

rms

∫ ∞

−∞
e−i2π(ν−ν0)τ

[
1 +Rϕ,f0(τ) +

∞∑
n=2

Rϕ,f0(τ)n

n!

]
dτ

= E2
0e

−ϕ2
rms

[
δ(ν − ν0) + SII

ϕ,f0(ν − ν0) +
∫ ∞

−∞
e−i2π(ν−ν0)τ

∞∑
n=2

Rϕ,f0(τ)n

n! dτ

]
.

(6.42)
Pure phase modulation leaves the total power of the signal unchanged [27, p. 28]. Hence,
the relative power contained in the carrier is exp(−ϕ2

rms). With a good feedback loop,
an integrated fast phase noise on the order of 100 mrad can be achieved even with a
very simple cavity-stabilized ECDL [178]. Therefore, at the fundamental wavelength, the
power lost from the carrier is typically a few percent at most. The situation changes
when harmonics of the laser output are generated. Frequency multiplication increases the
magnitude of the phase noise term ϕ(t) by the multiplication factor [186]. Therefore, the
integrated fast phase noise at the qth harmonic is given by qϕrms, and the power contained
in the upconverted carrier is exp(−q2ϕ2

rms). Once the argument of the exponential function
surpasses a threshold of approximately (1 rad)2, the carrier starts to collapse [186, 187]. We
will excite the 1S-2S two-photon transition in He+ using the 17th harmonic of a frequency
comb centered at 1033 nm. Intracavity HHG has been shown not to cause additional
linewidth broadening beyond the unavoidable phase noise scaling [188]. In our application
the two-photon absorption corresponds to another frequency doubling such that we are
effectively generating the 34th harmonic of the fundamental light. Figure 6.3 shows how
the power fraction remaining in the carrier depends on the integrated fast phase noise of
the driving laser. Already at an integrated fast phase noise of 24 mrad, the available power
drops to 50 %, putting a very stringent requirement on the spectral purity of the driving
laser.

6.2 Cavity-stabilized continuous-wave laser
The small natural linewidth of the 1S-2S transition in He+ also mandates a driving laser
for the HHG with a very narrow linewidth.

The slow phase noise of a free-running laser that determines the linewidth is usually
dominated by technical noise created in the various components. Important contributions
are for example pump intensity noise and mechanical vibrations that lead to fluctuations
in the length of the laser resonator. On longer time scales, changes in temperature and air
pressure lead to drifts of the output frequency. Passive optical resonators can reach much
higher stabilities than laser cavities since they do not contain a pumped gain medium.
Therefore, a standard method for constructing very stable lasers is to employ an external
ultrastable Fabry-Pérot resonator as a frequency reference. An electronic feedback circuit
is used to keep the laser output in resonance with the cavity.
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Figure 6.3: Carrier collapse when generating the 34th harmonic of a laser with phase
noise. The blue solid line shows the power remaining in the carrier for a given amount of
integrated fast phase noise in the driving laser. The dashed orange lines indicate the point
where the carrier power has dropped by 50 %.

While it is possible to directly stabilize a frequency comb to a reference cavity [189,
190], there are a number of practical limitations. For maximum coupling efficiency, all
modes of the frequency comb have to be resonant at the same time. This means that
the free spectral range of the cavity has to be an integer multiple of the comb repetition
rate, leading to cavity lengths that are often impractical. If a shorter cavity is used,
only a fraction of the comb modes can be simultaneously resonant. The other modes get
reflected from the cavity input coupler and generate excess shot noise in the photodetector
without contributing to the feedback error signal. Another challenge is that the coatings
of the cavity mirrors can introduce higher-order dispersion. While the mode spacing of
a frequency comb is perfectly regular, this is not the case for an optical resonator with
group velocity dispersion. The resulting mode mismatch limits the usable bandwidth of
the comb and can lead to asymmetries of the feedback error signal [189]. We therefore take
the more common approach of using an additional continuous-wave (cw) laser to transfer
the stability of the reference cavity to the frequency comb.

6.2.1 Interference-filter stabilized ECDL
ECDLs are ubiquitous in atomic physics experiments due to their simple construction and
large range of available wavelengths. However, it was found that the high phase noise levels
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of some ECDLs can lead to carrier collapse when a harmonic of the laser output is being
generated [178]. The typical frequency noise spectrum of a diode laser has a similar shape
as the example shown in Figure 6.2 [27, p. 67]. Below the corner frequency, technical noise
dominates which typically follows a 1/f scaling. Above the corner frequency, the noise
spectrum is white. This is partially due to the quantum noise given in Equation 6.26.
However, semiconductor lasers usually have a strong coupling between amplitude and phase
fluctuations. This creates another noise contribution that is α2 times the quantum noise,
where α is Henry’s linewidth enhancement factor [182, 191]. Typical values of α are in the
range 2 . . . 8 [192]. The resulting white frequency noise component is7

SI
ν(f) = (1 + α2) 1

(2π)2
hν0ltot

T 2
RPint

. (6.43)

Since the frequency noise power spectral density scales with the inverse square of the laser
cavity round-trip time TR, increasing the laser cavity length is very effective at improving
the noise performance [178]. The achievable intracavity power Pint is limited by the onset
of optical damage to the diode output facet. Another factor is the round-trip loss ltot which
can be reduced by increasing the reflectivity of the output coupler. However, this comes
at the cost of reduced output power.

A schematic of our laser is shown in Figure 6.4. It consists of an anti-reflection coated
laser diode that is placed in a roughly 10 cm long external cavity.

LD IF OCL1 L2 L3

Figure 6.4: Interference-filter stabilized ECDL. LD, laser diode; L1, laser diode collimator
(f = 4.5 mm); IF, interference filter; L2: “cat’s eye” lens (f = 13.86 mm); OC, output
coupler (R = 85 %); L3: output collimator (f = 13.86 mm).

The cavity is formed by the back facet of the diode and a partially reflective mirror
(output coupler). The laser diode output is collimated, and a second lens is used to focus
the light onto the output coupler. This forms a “cat’s eye” retroreflector which significantly
reduces the sensitivity against misalignment of the mirror [193, 194]. Single-mode operation
is achieved by placing a narrow-band interference filter8 in the laser cavity. The filter has
a specified center wavelength of 1064 nm and an FWHM bandwidth of 0.5 nm. We tune
the laser to the required wavelength of 1033 nm by tilting the filter. The output coupler
has a relatively high reflectivity of 85 % in order to minimize the white frequency noise.

7We limit our discussion to ECDLs with anti-reflection coated laser diodes where the reflection from
the diode output facet can be neglected. See chapter 9.3.2 in [27] for a more general overview of diode
laser configurations.

8Alluxa #4012.
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This limits the typical output power to around 3 mW. Since this is not sufficient for our
application, the output is subsequently amplified to around 30 mW in a small Yb-doped
fiber amplifier. The temperature of the laser is actively stabilized with a Peltier element
and a temperature sensor. In order to minimize drifts due to air pressure changes, it is
surrounded by an airtight enclosure that is machined from an aluminum block. The ECDL
and fiber amplifier are placed in a box made from sound-absorbing material to reduce the
influence of acoustic noise.

6.2.2 Reference cavity and feedback system
Figure 6.5 shows a schematic of the cw laser stabilization setup. Part of the light is sent
through a polarization maintaining single-mode fiber to the reference cavity assembly which
is placed on an active vibration isolation table.9 Like the ECDL, the assembly is placed in
a sound-absorbing box for acoustic isolation.

Fiber-noise cancellation

Acoustic noise can induce significant fluctuations in the optical path length of a single-mode
fiber which leads to phase noise on the transmitted light [195]. We therefore employ active
fiber noise cancellation [196]. After the light has passed through the fiber, its frequency is
shifted by fAOM using an acousto-optic modulator (AOM) driven by a voltage-controlled
oscillator (VCO). Part of the light is then retroreflected with a beam splitter and a mirror.
After passing through the AOM and fiber again, it is overlapped with a reference beam
that did not pass through the fiber. In our setup the reference beam is the Fresnel reflection
from the fiber input facet which is cleaved at 0◦ [177]. The two beams create a beat note
on a photodiode (PD1) at 2fAOM. This signal contains the phase fluctuations picked up by
the light on its path through the fiber. It is mixed with an 80 MHz reference signal from
an RF synthesizer in order to extract the phase difference. The phase locked loop is then
closed via a loop filter that gives feedback to the tuning port of the VCO.

Reference cavity

An electro-optic modulator (EOM) is used to generate the sidebands required for locking
the laser to the cavity using the Pound-Drever-Hall (PDH) technique [143]. The modulation
frequency is 21.32 MHz, and the modulation index is β = 0.95 which is close to the optimum
value of β = 1.08 [197]. The modulation index is measured by comparing the power
transmitted through the cavity when locking to the modulation sidebands and when locking
to the carrier. The cavity consists of a 77.5 mm long spacer made from ultra-low expansion
(ULE) glass10 and optically contacted dielectric mirrors with ULE substrates. A photon
lifetime of τc = 24.3 µs (relative drop of transmitted power to 1/e) corresponding to an

9Table Stable TS-150.
10Corning ULE.
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Figure 6.5: Stabilization setup for the cw laser. PBS, polarizing beam splitter; BS, non-
polarizing beam splitter; PM, polarization maintaining fiber; AOM, acousto-optic mod-
ulator; GTP, Glan-Taylor polarizer; EOM, electro-optic modulator; PD, photodiode; LP
filter, low-pass filter; SP, RF splitter; VCO, voltage-controlled oscillator. Focal lengths are
given in mm.

FWHM linewidth of 6.55 kHz was measured using the ring-down method (see Figure 6.6).
With a free spectral range of 1.93 GHz, this results in a finesse of 295 000.

The cavity is temperature stabilized and located in a vacuum chamber in a setup similar
to FP2 in [177]. The thermal expansion of ULE has a minimum at the zero-expansion
temperature Tc [177]. Close to this point the temperature dependence of the resonance
frequency can be written as

ν(T ) = ν0 + A(T − T0)2, (6.44)

where ν0 is the resonance frequency at Tc, and A is the second-order thermal expansion
coefficient. The cavity resonance frequency is measured by generating a beat note between
the outputs of the ECDL and of a frequency comb that is referenced to a hydrogen maser.11

In order to determine Tc and A, we have measured the resonance frequency for different
11T4Science pH Maser 1008.
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Figure 6.6: Ring-down measurement of the photon lifetime in the reference cavity. The
blue trace shows the output voltage of the cavity transmission photodiode (PD4). The
laser is initially locked to the cavity. At time t = 0 the light is switched off using an AOM
(fall time < 1 µs). The orange line is an exponential fit to the experimental data. The
measurement was repeated 10 times, resulting in an average photon lifetime of 24.3 µs.

temperature setpoints. To allow the cavity to reach thermal equilibrium, we have waited
for around one day after each setpoint change before recording the beat note frequency.
Figure 6.7 shows the resulting data and a fit using Equation 6.44. We obtain Tc = 31.839 ◦C
and A = 0.15 Hz/mK2. If we stabilize the temperature to within ±0.1 K from Tc, the
resulting residual temperature sensitivity is 15 Hz/mK at most.

The light reflected from the cavity is sent onto an InGaAs photodiode12 (PD2) followed
by a transimpedance amplifier with a gain of 10 kV/A. The signal is low-pass filtered
at 30 MHz in order to suppress the influence of the second-order sidebands at twice the
modulation frequency. After further amplification and demodulation in an RF mixer, the
resulting PDH error signal is sent to a commercial loop filter13 which gives feedback to the
laser diode current of the ECDL. An f = 250 mm lens is used for matching the laser beam
to the cavity mode. We send about 50 µW of light to the cavity, coupling in about 60 %
of the carrier power. This is measured by comparing the output voltage of PD2 when the
laser is locked or unlocked. Even though the coatings of the cavity mirrors are just a few
µm thick, their contribution to the overall thermal expansion is comparable to that of the

12Hamamatsu G8376-008A.
13Toptica FALC 110.
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Figure 6.7: Temperature dependence of the cavity resonance frequency measured from a
beat note with the output of a self-referenced frequency comb. The solid line is a fit of
Equation 6.44.

ULE spacer held close to Tc [177]. Some of the power coupled into the cavity is dissipated
in the coatings. This leads to localized heating and thermal expansion that quickly reacts
to changing power levels. We have measured the frequency of the cavity-stabilized cw
laser for different powers sent to the cavity and obtained a coefficient of −15 Hz/µW. In
order to mitigate drifts, the power level going to the cavity is measured with an amplified
photodiode14 (PD3) and is stabilized by giving feedback to the AOM driving power. When
the laser is locked to a resonance, a few µW are transmitted through the cavity. Half of
the light is sent onto a camera in order to monitor the spatial mode inside the cavity. The
other half is sent onto a photodiode (PD4) for monitoring the transmitted power.

6.2.3 Linewidth and stability

Part of the laser output is sent through a 100 m long polarization maintaining fiber to
another lab which contains a commercial self-referenced frequency comb.15 We use active
fiber noise cancellation to compensate the phase fluctuations induced in the long fiber.

14Thorlabs PDA20CS2.
15Menlo Systems FC1500-250-ULN.
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Frequency comb stabilization

The frequency of the nth comb mode is (see section 3.1)

fn = nfrep + fceo, (6.45)

where frep is the pulse repetition rate, and fceo is the carrier-envelope offset frequency. The
frequency comb has two feedback systems. The first one uses actuators that are designed
to mainly affect frep, while leaving fceo unchanged, and vice versa for the second one. The
carrier-envelope offset frequency is measured with an f − 2f interferometer and is tightly
locked to a 45 MHz reference derived from a hydrogen maser using the second feedback
system. The first feedback system can be used in two different modes of operation that
are sketched in Figure 6.8.

Frequency

Intensity
1033 nm 972 nm(a)

(b)

Figure 6.8: Illustration of frequency comb stabilization. The carrier-envelope offset fre-
quency fceo is locked to a stable reference. The second degree of freedom can be fixed by
stabilizing (a) the comb repetition rate frep, or (b) the beat note between a comb mode
and the output of a stable laser at fref . The linewidth and stability of our cavity-stabilized
cw laser can then be determined from the beat note with the stabilized frequency comb.

In the first mode (“RF lock”), the fourth harmonic of frep is locked to an RF reference
close to 1 GHz that is also derived from the hydrogen maser. We can see from Equation 6.45
that the phase noise of the nth comb mode is n times the phase noise of frep. At 1033 nm,
the mode number n is around one million. The feedback bandwidth is therefore limited
to around 100 Hz to avoid catastrophic up-multiplication of the phase noise of the RF
reference. The resulting linewidth of the comb modes is essentially that of the free-running
laser, i.e. a few hundred kHz. This mode is used for measuring the frequency of various
spectroscopy lasers relative to the hydrogen maser.

In the second mode (“optical lock”), a beat note between the output of an independent
ultrastable reference laser at frequency fref and the closest comb mode is generated. The
beat note frequency is

fbeat = nreffrep + fceo − fref , (6.46)
where nref is the number of the closest comb mode to the reference laser. The feedback
system is then used to lock fbeat to an RF reference. We can see from Equation 6.46
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that this indirectly stabilizes the repetition rate frep. The repetition rate is measured
with a frequency counter that is referenced to the hydrogen maser. Since the beat note
is generated between two similar optical frequencies, a tight phase lock can be employed
without up-multiplying the RF phase noise. The resulting linewidths of the comb modes
across the output spectrum are close to that of the reference laser. Therefore, this mode
allows comparing the linewidths of lasers that are operating at different wavelengths. The
lab with the frequency comb also contains a number of cavity-stabilized ECDLs used for
hydrogen spectroscopy. We used two lasers operating at 972 nm (FP1 and FP216) as
references for stabilizing the frequency comb.

Frequency stability

Figure 6.9 shows the stability of the beat note between the outputs of the cavity-stabilized
cw laser and of the RF locked comb recorded over a continuous interval of four days.
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Figure 6.9: Frequency stability of the cavity-stabilized cw laser measured against the RF
locked frequency comb. Counter data was recorded with 0.5 s gate time and the results
were averaged over 1000 s intervals. A constant linear drift of 39 mHz/s was subtracted.

Aging of the cavity material leads to a constant frequency drift of 39 mHz/s that is
subtracted from the data [177]. The data is averaged over 1000 s intervals in order to
remove the contribution of frequency fluctuations of the hydrogen maser on shorter time
scales. We can see that the frequency varies by around ±20 Hz during the measurement

16These are further developed versions of the laser systems described in [177] and [178].
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interval which is comparable to the performance of similar systems used in our group [177,
198].

Line shape

Figure 6.10 shows beat notes between the outputs of our cavity-stabilized cw laser and of
the frequency comb that was locked to either FP1 or FP2.
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Figure 6.10: Beat notes between the outputs of the cavity-stabilized cw laser and of the
optically locked frequency comb recorded with different frequency spans and resolution
bandwidths (RBW). The solid blue traces are recorded with the comb locked to FP1 and
the dashed orange traces with the comb locked to FP2. The beat note carrier frequencies
are 55.4 MHz and 62.5 MHz for the comb locked to FP1 and FP2, respectively.

The narrow carrier and broadband noise can be clearly observed. We can also see
some narrow spurious signals that show up at different frequency ranges. These can have
various sources, for example the laser current drivers, PDH photodiodes, or loop filters.
Some signals only show up when the comb is locked to either FP1 or FP2 which makes
it possible to identify the laser responsible for them. For example, the spurs at 1.3 MHz
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are due to FP1. Others are present in both cases and could therefore be caused by our
laser or by the frequency comb itself. If a spur is entirely due to phase modulation, its
power relative to the carrier power is given by J2

1 (β)/J2
0 (β) [27, pp. 25–30], where Jα are

the Bessel functions of the first kind, and β is the modulation index. The largest spurs
visible in Figure 6.10 are at 46 kHz and have power levels of around 40 dB below the carrier,
corresponding to β ≈ 0.02. At the 34th harmonic this would result in a modulation index
β ≈ 0.68, and around 20 % of the total power would be lost from the carrier. We later
found out that they were caused by the PDH locking electronics of our laser and were able
to mostly eliminate them (see Figure 6.14).

Figure 6.11 shows beat notes recorded with the highest resolution setting of our spec-
trum analyzer on a linear scale. The resulting FWHM linewidth of 1.2 Hz is comparable
to the 1 Hz resolution bandwidth of the spectrum analyzer and represents an upper limit
for the linewidth of the lasers.
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Figure 6.11: Beat notes between the outputs of the cavity-stabilized cw laser and of the
optically locked frequency comb recorded with 1 Hz resolution bandwidth. The comb was
locked to FP1 (solid blue trace) or FP2 (dashed orange trace). The −3 dB linewidth of
both traces is 1.2 Hz.

In order to test how the frequency comb itself affects the measured noise, we also
recorded a direct beat note between the outputs of FP1 and FP2 and compared the result
with beat notes between the outputs of one of the lasers and of the frequency comb which
was optically locked to the other laser. Figure 6.12 shows the results. For Fourier frequen-
cies up to a few tens of kHz, the spectra are almost identical, whereas for higher Fourier
frequencies there is significantly more noise in the beat notes with the frequency comb
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than in the beat note between the two cw lasers. We attribute this to the finite bandwidth
of the comb feedback system which is around 1 MHz. At Fourier frequencies close to the
feedback bandwidth, the feedback system can increase the noise of the system instead of
decreasing it, leading to “servo bumps” in the noise spectrum. Due to these limitations we
decided to investigate the fast phase noise of our laser system with a different method.
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Figure 6.12: Beat notes between the outputs of FP1 and FP2 (blue traces), FP1 and the
comb locked to FP2 (orange traces), and FP2 and the comb locked to FP1 (green traces).
At low Fourier frequencies, the feedback loop stabilizing the frequency comb faithfully
transfers the phase stability. At higher Fourier frequencies, the uncompensated noise of
the frequency comb becomes significant.

6.2.4 Phase noise characterization
The standard method for a complete phase noise characterization of a laser system is to
compare it with a second independent laser system with equal or better noise performance.
Information about the phase noise spectrum can also be obtained using a delayed self-
heterodyne interferometer with a fiber delay line [199]. Here, we show how the residual
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fast phase noise of a cavity-stabilized laser can be characterized by generating a beat note
between the laser output and the light transmitted through the cavity. Since the cavity
averages the amplitude and phase fluctuations of the incident light over the photon lifetime
in the cavity, faster noise components are strongly attenuated in the light circulating in
the cavity and therefore also in the cavity transmission. By comparing the laser output to
the cavity transmission, the noise with Fourier frequencies above the cavity linewidth can
be evaluated.

In transmission a Fabry-Pérot cavity acts as a low-pass filter for amplitude and phase
noise with a corner frequency corresponding to its half width at half maximum (HWHM)
linewidth ∆fHWHM = 1/(4πτc). Therefore, the noise components falling outside the cavity
linewidth are strongly attenuated with a slope of −20 dB/decade [200]. The expected
filtering effect of our reference cavity is visualized in Figure 6.1.

The transmission of a high-finesse reference cavity can be used as a low-noise laser
source [201]. However, the available power is often very small since the power sent to the
reference cavity has to be limited in order to avoid drifts of the resonance frequency [177].
For the phase noise measurement, we send about 100 µW of light to the cavity, resulting
in a transmitted power of 13 µW.

Since the measurements reported here are made at frequencies above the acoustic range,
fiber noise cancellation is omitted and the AOM is driven at a fixed frequency fAOM =
40 MHz. The light from the cavity and the laser output eventually produce a beat note at
this frequency.

Half of the light transmitted through the cavity is coupled into a single-mode fiber and
sent to a beat note detection setup (see Figure 6.13). There it is overlapped with about
1 mW of light from the cavity-stabilized cw laser, and a beat note is generated with a
balanced heterodyne detector (see subsection 6.3.2). Compared to using a single detector,
this improves the achievable signal-to-noise ratio and suppresses possible amplitude noise
in the laser output [202].
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Figure 6.13: Experimental setup for phase noise characterization. The beat note between
the laser output and the reference cavity transmission is generated with a balanced het-
erodyne detector [202]. PBS, polarizing beam splitter; BS, non-polarizing beam splitter;
PD, photodiode; PM, polarization maintaining fiber.
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The beat note is analyzed by an RF spectrum analyzer.17 It is important to note that
the envelope detection and logarithmic processing traditionally used in spectrum analyzers
lead to systematic errors when measuring noise powers [203]. Many modern spectrum
analyzers provide alternative detector options that avoid these issues. We measure the
single sideband phase noise L(f) using the integrated phase noise measurement function of
our spectrum analyzer. In this mode the device automatically selects the correct detector,
performs a logarithmic sweep of the frequency offset, and normalizes the measured traces
according to the resolution bandwidth and carrier power.

The orange trace in Figure 6.14 shows the resulting phase noise spectrum for Fourier
frequencies between 10 kHz and 10 MHz. In this frequency range the phase noise in the
light transmitted through the cavity is suppressed by more than an order of magnitude and
therefore does not affect the measurement. The phase noise of the laser reaches a maximum
value of −98 dBc/Hz at 30 kHz which we attribute to technical noise on the ECDL that
is not completely suppressed by the feedback loop. The slight bump at 1.5 MHz is caused
by the feedback loop whose phase margin reaches zero at this frequency. The phase noise
of the reference oscillator inside the spectrum analyzer and of the signal generator that
drives the frequency-shifting AOM (purple trace) contributes to the measured noise levels.
It contains some spurious signals, but remains well below the phase noise of the laser in the
entire Fourier frequency range. The photodetection noise (red trace) becomes comparable
to the phase noise of the laser for Fourier frequencies above 3 MHz which sets the sensitivity
limit in our particular setup.

The integrated phase noise starting from 10 MHz is plotted as a dashed orange line. It
shows that most of the phase noise contribution comes from the Fourier frequency range
between 2 MHz and a few hundred kHz where the limited gain of the feedback loop cannot
fully suppress the intrinsic noise of the laser. The total integrated phase noise from 10 MHz
to 10 kHz is ϕrms = 10.2 mrad. Based on our results we expect that if the stability of our
laser can be faithfully transferred to the driving frequency comb of the HHG, 89 % of the
power will remain within 10 kHz around the carrier at the 34th harmonic (see Figure 6.3).

Another method for measuring the noise performance of a laser relative to its reference
is to analyze the in-loop error signal of the lock. We use a wideband RF splitter18 in order
to send the same error signal to the loop filter and to a spectrum analyzer while maintaining
impedance matching between the components. The spectrum analyzer measures the RF
power p(f) of the signal on its input contained within the chosen resolution bandwidth
at frequency f . The one-sided voltage power spectral density of the signal is obtained by
normalizing to a 1 Hz bandwidth and multiplying with the system impedance:

SI(f) = Z0 p(f)/RBW, (6.47)

where Z0 = 50 Ω is the system impedance, and RBW is the resolution bandwidth of the
spectrum analyzer.

17Agilent E4440A.
18Mini-Circuits ZFRSC-2050+.
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Figure 6.14: Single sideband phase noise L(f) between the output of the cavity-stabilized
cw laser and its reference cavity measured using the beat note with the cavity transmission
(orange trace) and extracted from the in-loop error signal (blue trace). The noise floor
originating from the beat note photodetection (red trace) is obtained by repeating the
measurement with the cavity transmission light blocked. The phase noise of the reference
oscillator inside the spectrum analyzer and of the signal generator that drives the frequency-
shifting AOM is measured by directly connecting the signal generator to the spectrum
analyzer (purple trace). The dashed orange curve shows the mean square integrated phase
noise calculated from the beat note of the laser with the cavity transmission. An upper
limit for the noise level of the PDH detection (green trace) is obtained by repeating the
measurement with the feedback loop turned off and the laser detuned from the cavity
resonance, such that the entire incident power is reflected onto the PDH photodiode.
The spurious peak close to 5 MHz is an intermodulation product generated in the PDH
detection.
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In order to convert voltage fluctuations of the error signal to frequency fluctuations
of the laser, the slope of the PDH error signal has to be determined. Since the free-
running linewidth of our laser is much broader than the cavity line, we cannot directly
observe the slope by sweeping the laser over the resonance. Instead, we lock the laser
to the cavity and slowly modulate the setpoint of the loop filter at a frequency of about
100 Hz while recording the light intensity transmitted through the cavity. The drop in
power transmitted through the cavity can be easily converted to a frequency offset using
the known cavity linewidth [204]. In this way we measure a slope of the PDH error signal
at DC of k0 = 2.30 × 10−4 V/Hz. At Fourier frequencies above the cavity linewidth, the
field stored inside the cavity can no longer follow the fluctuations of the incident field.
Therefore, the slope of the PDH discriminator has the frequency-dependent form [205,
pp. 66–69]:

k(f) = k0√
1 + 4

(
f

∆fFWHM

)2
, (6.48)

where f is the frequency of the signal, and ∆fFWHM is the FWHM linewidth of the cavity.
The phase noise of the laser can be obtained using the transfer function:

L(f) = 1
2S

I
ϕ(f) = SI

ν(f)
2f 2 = SI(f)

2f 2k2(f) , (6.49)

where SI
ν(f) and SI

ϕ(f) are the one-sided frequency and phase noise power spectral densities.
The result of the in-loop characterization is shown as the blue trace in Figure 6.14. It is

in good agreement with the measurement using the cavity transmission. One complication
when analyzing the in-loop error signal is that for sufficiently large gain the feedback loop
can suppress the error below the error signal detection noise limit, thereby writing the
noise onto the system output. In this case the analysis gives an underestimation of the
system noise. In our measurement the detection noise limit (green trace) stays below the
measured in-loop error signal in the analyzed Fourier frequency range which ensures that
the feedback loop does not add significant noise from our detection setup to the laser
system.

6.3 Stabilized driving laser system
Our HHG setup uses an Yb:KYW mode-locked oscillator as a seed laser. The laser is tightly
locked to the cavity-stabilized cw laser which serves as a stable reference. Figure 6.15 shows
an overview of the laser system. In the following the different components of the system
will be explained.

6.3.1 Laser oscillator and amplifiers
The Yb:KYW oscillator was developed in our group and a more detailed description can
be found in [206]. It emits 105 fs long pulses with a repetition rate of 40 MHz. The output
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Figure 6.15: Overview of the laser setup for HHG. The output of the Yb:KYW seed laser
is amplified in two preamplifiers and a power amplifier. The pulses are compressed in a
pair of multi-pass cells before being sent into the enhancement cavity for HHG. The cavity-
stabilized cw laser serves as the reference for stabilizing the driving laser frequency, the
enhancement cavity length, and the optical path length in the setup. AOM, acousto-optic
modulator; VCO, voltage-controlled oscillator; PM fiber, polarization maintaining fiber.
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spectrum has a 10 nm FWHM bandwidth and is centered around 1030 nm. This overlaps
with 17 times the wavelength of the He+ 1S-2S two-photon transition. The average output
power is 10 mW. The oscillator also has a secondary output with a total power of 60 mW
that stems from the reflection from an intracavity filter that is used for shaping the emission
spectrum. The spectrum of the secondary output is broad and spans from around 1020 nm
to 1060 nm. This light can be used for measuring the carrier-envelope offset frequency in
an f − 2f interferometer [206], and for generating a beat note with light from the cavity-
stabilized cw laser. In this way the full power of the primary output remains available for
the subsequent stages.

The HHG setup relies on a high power Yb:YAG Innoslab amplifier [33] which can
produce an output power of up to 400 W. Since the Yb:KYW oscillator is not powerful
enough to directly seed this amplifier, two diode-pumped Yb:LuAG preamplifiers are used
to amplify the light first to around 140 mW and then to 2.8 W.

After the high power amplifier, the pulses are temporally compressed from a length of
800 fs to 60 fs in two consecutive compression units that are based on spectral broadening
in multi-pass cells [207]. Finally, the light is coupled into an enhancement cavity in which
HHG takes place.

Double-pulse generation

As discussed in chapter 3, counter-propagating XUV frequency comb pulses have to meet
at the position of the He+ ions for efficient Doppler-free two-photon excitation. This is
achieved by back-reflecting the XUV beam (see subsection 4.4.2). However, at 40 MHz
repetition rate, the pulse-to-pulse separation is 7.5 m. The back-reflection mirror would
therefore have to be placed 3.75 m away from the ion trap, requiring an impractical size
of the vacuum chambers. The distance could in principle be reduced by using a higher
repetition rate. However, for constant average power this would reduce the pulse energy
which has a strong influence on the efficiency of the HHG [208]. Another limiting factor in
cavity-enhanced HHG is the accumulation of steady-state plasma in the laser focus which
impedes phase matching and can destabilize the lock of the cavity length. This effect also
becomes more significant with higher repetition rates [127].

Instead, in our setup a Mach-Zehnder interferometer is inserted into the frequency comb
laser beam between the first and the second preamplifier. This turns the frequency comb
pulses into pulse pairs that are spaced by the path length difference of 1 m. The double-
pulse generation setup was constructed by V. Vaidyanathan and is described in detail in
[209]. The pulse pairs travel together through the rest of the setup and are converted to
the XUV in the enhancement cavity. The first and second pulse of each pulse pair are
then made to collide at the position of the ions by putting the back-reflection mirror 50 cm
behind the ion trap (see Figure 4.24). In this way the pulse energy is only halved, whereas
increasing the repetition rate to 300 MHz, such that the spacing between all consecutive
pulses is 1 m, would reduce the pulse energy by a factor of 7.5.

The mode structure of a frequency comb “survives” nonlinear processes, such as HHG,
since in steady state each pulse experiences the same nonlinear effects. At first glance, it
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might appear that this is no longer the case for our pulse pairs where the first pulse can
experience a very different environment compared to the second one (for example due to
plasma buildup in the enhancement cavity during the first pulse). However, the system is
still in steady state such that each first pulse in the train of double pulses experiences the
same nonlinearities as each other first pulse, and each second pulse experiences the same
nonlinearities as each other second pulse. In other words, the output of the HHG setup
contains the pulse trains of two frequency combs that share the same beam path and whose
pulses are delayed by 1 m from each other. The back-reflection mirror “separates” the two
frequency combs and makes them collide at the position of the ions. This also means that
the mode spacing remains 40 MHz, even though pulses pass through the system at a rate
of 80 MHz.

6.3.2 Low-noise beat detection
The ultimate performance limit of the frequency comb stabilization system is determined by
how well we can detect the phase fluctuations between the frequency comb and the cavity-
stabilized cw laser that serves as the reference. The phase is measured by generating a
beat note between the cw laser and the closest mode of the frequency comb.

Beat detection setup

Figure 6.16 shows a schematic of the beat detection setup. Three identical setups are used
in the stabilization system (see Figure 6.15).

λ/2

λ/2

IF ET

cw
laser

Frequency
comb

λ/2PBS PBS
Rf

PD1

PD2

Transimpedance
amplifier

Beat note
out

Differential photodetector

Figure 6.16: Beat detection setup. Single-mode fibers are used to guide the light to the
differential photodetector. PBS, polarizing beam splitter; IF, interference filter; ET, etalon;
PD, photodiode.

First, the light from the frequency comb is spectrally filtered to reduce the optical power
at frequencies that do not contribute to the beat note. In this way the noise contributions
from the frequency comb light are minimized. Furthermore, we found that the short optical
pulses can saturate the photodiodes and subsequent amplifier at average power levels that
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are far below the cw saturation power. Strong spectral filtering is therefore necessary such
that the full available power of the frequency comb can be used. The first step is an
interference filter19 which has a specified FWHM bandwidth of 0.4 nm, corresponding to
112 GHz at 1033 nm. The light is then further filtered with an etalon20 which consists of
a 0.5 mm thick fused silica substrate and has a partially reflective coating (R = 90 %) on
both sides. This results in a free spectral range of 207 GHz and an FWHM linewidth of
6.9 GHz [137, pp. 155–156]. At a pulse repetition rate of 40 MHz, this corresponds to only
around 170 comb modes passing through the filters.

The filtered frequency comb light is then overlapped with light from the cw laser on
a polarizing beam splitter (PBS). A half-wave plate and another PBS are used to project
the two laser beams onto common polarization axes. Both outputs of the PBS are then
individually coupled into single-mode fibers which deliver the light to a pair of photodiodes
that make up a differential photodetector. This arrangement is called a balanced heterodyne
detector [202]. As we will show below, it can achieve a significantly higher signal-to-noise
ratio compared to using a single photodetector

We begin our analysis by considering the signal and noise generated in a beat detection
setup with a single photodetector.21

Photodiode signal

In a photodiode, incident photons whose energy exceeds the band gap can excite electrons
into the conduction band. The resulting output current is given by the rate of successfully
detected photons times the elementary charge [210, p. 10]:

ipd = ηe

hν0
ptot, (6.50)

where η is the quantum efficiency of the photodiode, e is the elementary charge, hν0 is the
photon energy, and ptot is the total incident optical power.

In our beat detection setups, the laser beams are overlapped in single-mode optical
fibers to ensure essentially perfect spatial mode matching. The electric fields therefore
maximally interfere, and the total optical power at the detector is given by

ptot =
∣∣∣∣∣√pcwe

iωcwt +
∑

n

√
pne

i[ωnt+∆φn(t)]
∣∣∣∣∣
2

, (6.51)

where pcw and pn are the power of the cw laser and of the nth comb mode, respectively,
ωcw is the frequency of the cw laser, ωn = 2π(nfrep + fceo) is the frequency of the nth
comb mode, and ∆φn(t) are the phase fluctuations between the nth comb mode and the

19Layertec 157313.
20LightMachinery OP-6204-M.
21This corresponds to the setup from Figure 6.16 where one of the two photodiodes is taken out.
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cw laser. Inserting Equation 6.51 into Equation 6.50 leads to

ipd = ηe

hν0

pcw +
∑

n

pn + 2
∑

n>m

√
pnpm cos[2π(n−m)frept]

+ 2
∑

n

√
pcwpn cos[(ωn − ωcw)t+ ∆φn(t)]

. (6.52)

The first and second term of Equation 6.52 give the DC photocurrent which is determined
by the time-averaged total optical power that impinges on the photodiode:

idc = ηe

hν0
(pcw + pcomb) , (6.53)

where pcomb = ∑
n pn.

As we will discuss below, the fluctuations of this current are an important noise source
in any photodetector. The third term consists of frequency components at multiples of
the comb repetition rate frep. This reflects the regular current bursts that are created by
the frequency comb pulses striking the detector. The last term contains the beat notes
between the cw laser and the comb modes. Electronic filters are used to select only the
lowest frequency component. The signal current then is

isig = 2 ηe
hν0

√
pcwpk cos[(ωk − ωcw)t+ ∆φk(t)], (6.54)

where the k is the index of the comb mode that is closest to the cw laser frequency. Since
the power contained in a single comb mode is usually quite low, the signal current is often
small compared to typical input noise levels of RF amplifiers or spectrum analyzers. A
transimpedance amplifier is therefore used to convert the current signal into a voltage

Usig = Rf isig, (6.55)

where Rf is the gain of the amplifier which is measured in Ω. A transimpedance amplifier
can be constructed from a fast operational amplifier and a feedback resistor22 as shown
schematically in Figure 6.16. The level of the resulting signal is quantified by the average
power it dissipates in a load that matches the characteristic impedance Z0 = 50 Ω:

psig =

〈
U2

sig

〉
Z0

=
R2

f

Z0

〈
i2sig
〉
, (6.56)

where ⟨⟩ signifies temporal averaging. We insert Equation 6.54 and obtain

psig = 2
R2

f

Z0

(
ηe

hν0

)2
pcwpk. (6.57)

22Transimpedance amplifiers are often constructed with a 50 Ω output impedance in order to match
the characteristic impedance of standard coaxial cables. This forms a voltage divider with the 50 Ω input
impedance of an RF amplifier or spectrum analyzer. The transimpedance gain is then equal to half the
value of the feedback resistor.
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Detection noise

One consequence of the quantization of electric charge is that measuring a current is
equivalent to counting the number of electrons per unit time. Since the arrival of the
individual electrons is uncorrelated,23 their number follows a Poisson distribution. The
fluctuating electron number leads to a mean square noise current [210, pp. 12–13][211,
p. 42]: 〈

i2sn
〉

= 2eiavgB, (6.58)
where iavg is the average current, and B is the detection bandwidth.24 This contribution
is called the shot noise. In the beat detection setup, the average current is given by
Equation 6.53.25 The transimpedance amplifier converts the shot noise current into a
voltage such that the detected noise power is

psn =
R2

f

Z0

〈
i2sn
〉

= 2
R2

f

Z0

ηe2

hν0
(pcw + pcomb)B. (6.59)

In addition to the shot noise, technical fluctuations of the laser output power can lead to
noise in the photocurrent. These fluctuations are often quantified as a relative intensity
noise (RIN) spectrum which is defined as the normalized one-sided spectral density of the
output power fluctuations δp [27, p. 56]:

RIN(f) =
SI

δp(f)
p2

out
, (6.60)

where pout is the mean output power of the laser. It is measured on a logarithmic scale in
dBc/Hz. The resulting mean square intensity noise current is〈

i2in
〉

=
(
ηe

hν0

)2
[p2

cwRINcw(f) + p2
combRINcomb(f)]B, (6.61)

where f is the Fourier frequency at which the noise is detected, and we assume that the
RIN of the lasers does not change significantly within the detection bandwidth. The noise
power is

pin =
R2

f

Z0

〈
i2in
〉

=
R2

f

Z0

(
ηe

hν0

)2
[p2

cwRINcw(f) + p2
combRINcomb(f)]B. (6.62)

Furthermore, any real photodetector produces technical noise at its output. A fundamental
limit is set by thermal fluctuations of the charge carriers in the feedback resistor. These
lead to a mean square noise current which is given by the Nyquist formula [211, p. 42]:〈

i2ny

〉
= 4kBTR

Rf

B, (6.63)

23This is only strictly true if the light can be described as a coherent state, such as the output of a laser
oscillator. The light emitted by “quantum light sources”, such as single atoms or light bulbs, can generate
correlated (or anticorrelated) photoelectrons.

24If the signal is viewed on a spectrum analyzer, this is given by the selected resolution bandwidth.
25In principle the dark current of the photodiode also contributes to the shot noise. However, this

contribution is negligible for detectors that operate in the near infrared.
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where kB is the Boltzmann constant, and TR is the temperature of the resistor. The
resulting noise power is

pny =
R2

f

Z0

〈
i2n
〉

= 4kBTRRf

Z0
B. (6.64)

Other technical noise sources include the input voltage and current noise of the operational
amplifier. The total output noise of commercial amplified photodetectors, which includes
the contribution of Nyquist noise, is often specified somewhat confusingly as a “minimum
noise equivalent power” (NEP) which is measured in W/

√
Hz. This simply means that the

detector produces an RF noise power26

pdet =
R2

f

Z0

(
ηmaxe

hνmax

)2
NEP2B, (6.65)

where νmax is the frequency where the quantum efficiency of the detector has its maximum
value ηmax.

The signal-to-noise ratio (SNR) is given by the ratio between the signal power and the
sum of all noise powers:

S

N
= psig

psn + pin + pdet

=
2
(

ηe
hν0

)2
pcwpk{

2 ηe2

hν0
(pcw + pcomb) +

(
ηe

hν0

)2
[p2

cwRINcw(f) + p2
combRINcomb(f)] +

(
ηmaxe
hνmax

)2
NEP2

}
B
.

(6.66)

The detection bandwidth B is assumed to be larger than the signal bandwidth, but smaller
than the bandwidth of the various noise sources. The SNR is therefore inversely propor-
tional to B. It takes its maximum value if the noise is dominated by the shot noise term
due to the cw laser, i.e.

2ηe
2

hν0
pcw ≫

(
ηe

hν0

)2
[p2

cwRINcw(f) + p2
combRINcomb(f)] +

(
ηmaxe

hνmax

)2
NEP2, (6.67)

and
pcw ≫ pcomb. (6.68)

In this case, the detection is called shot noise limited,27 and the SNR can be approximated
by [213] (

S

N

)
sn

≈ ηpk

hν0B
. (6.69)

26The frequency dependence of the noise power spectral density is usually neglected here.
27This limit can in principle be exceeded by making use of multiple beat notes between the different

modes of a frequency comb and a cw laser [212]. However, the technique adds experimental complexity
and requires the use of very fast photodetectors.
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Remarkably, the SNR only depends on the number of detected photons per time interval
1/B from the comb mode that produces the beat signal with the cw laser. The design
goal of the beat detection system is therefore to achieve shot noise limited detection while
minimizing the amount of light that is lost from the frequency comb mode.

Balanced heterodyne detection

Since the phase of an optical wave jumps by 180◦ upon reflection from an optically denser
medium, the beat note signals generated in the two photodiodes of the differential pho-
todetector are out of phase relative to each other. The photodiodes are arranged in series
such that the difference of the two photocurrents enters the transimpedance amplifier. The
resulting signal is therefore the sum of the beat note signals from the individual diodes,
while common-mode signals, such as amplitude fluctuations of the laser light, are cancelled.
The common-mode suppression of the balanced heterodyne detector can be optimized by
adjusting the angle of the half-wave plate before the PBS [202]. The shot noise generated
in the two photodiodes is uncorrelated and can therefore not be reduced by subtracting the
currents [202]. Compared to using only one photodiode, the balanced heterodyne detector
generates twice the shot noise power, while the signal power is quadrupled. If the detection
is only limited by shot noise, it can therefore increase the SNR by up to a factor of 2 [9]. In
practice, lasers often have technical amplitude noise far above the shot noise level such that
the SNR gain can be much higher. Furthermore, the subtraction of the two photocurrents
allows us to send more light onto the photodiodes before the transimpedance amplifier is
saturated.

We use home-built differential photodetectors which contain two fiber-coupled InGaAs
photodiodes28 with a specified quantum efficiency of 76 % at 1033 nm. The transimpedance
amplifier consists of a fast operational amplifier29 and a 12 kW feedback resistor. The
output is impedance matched to a coaxial cable using a 50 Ω series resistor such that
the transimpedance gain is 6 kW. We also tested two different commercial differential
photodetectors with similar specifications30 and achieved very similar performance.

Beat note results

Figure 6.17 shows a beat note between light from the cw laser and one mode of the Yb:KYW
oscillator (blue trace). The noise level due to amplitude noise of the cw laser light is
measured by blocking the frequency comb light (orange trace). The noise due to the comb
light alone is below the detector noise level (green trace). The resulting SNR is 60 dB in
100 kHz bandwidth. This corresponds to a phase noise detection limit of −110 dBc/Hz
(see section 6.1.1). In total, 1.1 mW of cw laser light and 26 µW of frequency comb light
are sent onto the detectors, corresponding to roughly 150 nW per mode. The shot noise
limited SNR given by Equation 6.69 is then 68 dB in 100 kHz bandwidth. Our setup does

28Thorlabs FGA01FC.
29Texas Instruments OPA847.
30Wieserlabs WL-BPD220MA and Thorlabs PDB450C.
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Figure 6.17: Beat note between light from the cw laser and one mode of the Yb:KYW
oscillator generated by the beat detection setup (blue trace). The resolution bandwidth is
100 kHz. The orange trace is the noise floor due to the cw laser light. The green and red
traces are the noise levels of the photodetector and the RF spectrum analyzer, respectively.

not quite reach this limit which indicates that the amplitude noise of the cw laser is not
fully cancelled in the balanced heterodyne detection. Another explanation is that the
actual comb mode power might be somewhat lower than our rough estimate. Nonetheless,
the noise level stays below the beat note signal in the entire frequency range. The beat note
contains prominent peaks at 5.5 MHz from the carrier. We attribute them to the Yb:KYW
oscillator since they are not present in the cw laser spectrum (see subsection 6.2.4).

6.3.3 Frequency stabilization

Light from the cavity-stabilized cw laser setup is delivered from a neighboring lab to
the driving laser system via a 20 m long polarization maintaining fiber. Optical path
length fluctuations of the fiber are compensated using active fiber noise cancellation (see
section 6.2.2). The light is used as a reference for stabilizing the driving laser frequency,
the length of the enhancement cavity, and the optical beam path. The available power of
around 5 mW is insufficient for these tasks such that an Yb-doped fiber amplifier is used
to amplify it to 100 mW.

The basic concept for the stabilization is illustrated in Figure 6.18. Feedback is applied
to the driving laser such that the kth comb mode is tightly phase locked to the cw laser.
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Figure 6.18: Illustration of the stabilization principle. One comb mode is tightly locked
to the cavity-stabilized cw laser, making it the fixed point of the comb. According to the
elastic tape model, the comb mode frequencies expand or contract symmetrically about
the fixed point. The cw laser frequency fcw is tuned close to the 34th sub-harmonic of the
He+ 1S-2S transition frequency f1S-2S. The residual frequency fluctuations drop out in the
two-photon excitation.

Its frequency is then given by
fk = fcw + fbeat, (6.70)

where fcw is the frequency of the cw laser, and fbeat is the frequency of the beat note which
is determined by the feedback electronics. The frequencies are chosen such that

fk = f1S-2S

34 , (6.71)

where f1S-2S is the He+ 1S-2S transition frequency. The 17th harmonic of the frequency
comb can therefore drive the transition. The frequency of the nth comb mode is

fn = nfrep + fceo = fk + (n− k)frep, (6.72)

where frep is the pulse repetition rate, and fceo is the carrier-envelope offset frequency. The
two-photon transition is driven by mode pairs fk+m and fk−m whose photon energies add
up to the transition energy (see subsection 3.2.1). The sum frequency can be expressed
using Equation 6.72:

fk+m + fk−m = 2fk. (6.73)
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This behavior can be understood using the elastic tape model of the frequency comb (see
section 3.1). Even though the frequencies of the individual comb modes with mode numbers
n ̸= k are not actively stabilized, their fluctuations are symmetric with respect to the fixed
point at frequency fk. The fluctuations are then cancelled by the symmetry of the two-
photon excitation. It is therefore not necessary to fully stabilize the frequency comb by
giving feedback to the carrier-envelope offset frequency.

In order to ultimately determine the He+ 1S-2S transition frequency, the frequency fk

has to be measured (see Equation 6.71). This can be done by measuring fcw with a second
frequency comb as described in subsection 6.2.3, and using Equation 6.70. Alternatively,
the repetition rate frep and the carrier-envelope offset frequency fceo of the Yb:KYW oscil-
lator can be measured with a photodiode and with a home-built f−2f interferometer [206],
respectively. The frequency fk can then be calculated using Equation 6.72.

A schematic of the frequency stabilization setup is shown in Figure 6.19. It consists of
two consecutive stages with different feedback bandwidths.

Slow feedback

The purpose of the first stage is to pre-stabilize the frequency of the comb mode. A beat
note between the comb mode and the cw laser is created with the first beat detection
setup. The secondary output from the Yb:KYW oscillator is used such that no power is
lost from the main output. The signal is low-pass filtered to isolate a single beat note.
A digital phase and frequency detector31 (PFD) measures the phase difference between
the beat note signal and a 10 MHz reference generated by an RF synthesizer. The PFD
outputs a stream of pulses that are triggered by the zero crossings of the input signals. The
digital logic is arranged such that the averaged output level is proportional to the phase
difference between its input signals as long as the difference stays within ±π. Once the
phase difference exceeds this range, the device switches into a different mode where the
averaged output level is proportional to the frequency difference between the input signals.
This allows the feedback loop to reliably acquire the lock even if the beat frequency is far
away from the reference frequency. The output of the PFD is low-pass filtered to “smooth
out” the pulsed signal produced by the digital circuit. A home-built loop filter then gives
feedback to the cavity length of the Yb:KYW oscillator using one of the end mirrors which
is glued to a piezoelectric actuator. In this way a feedback bandwidth of a few kHz is
reached. The actuator has only a relatively small range and cannot compensate larger
drifts of the cavity length. The output of the loop filter is therefore used as the error signal
for a second loop filter which controls a piezoelectric stage32 that moves the other end
mirror of the laser cavity. This stage has a very large range of 600 µm, but the bandwidth
is only a few Hz. In this way the piezoelectric actuator is always kept in the center of its
travel range.

31onsemi MC100EP140.
32PI P-625.
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Figure 6.19: Driving laser frequency stabilization setup. This is a more detailed view of the
two green boxes in Figure 6.15. The beam path inside the Yb:KYW oscillator is simplified
and in reality contains more folding mirrors (see [206] for details). Two feedback loops are
used to tightly lock one mode of the frequency comb to the cw laser. LP filter, low-pass
filter; SP, RF splitter; PFD, phase-frequency detector; VCO, voltage-controlled oscillator;
AOM, acousto-optic modulator. Focal lengths are given in mm.
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Fast feedback

While the slow feedback loop is able to keep the comb mode phase locked to the cw laser,
the actuators are not fast enough to fully suppress the phase noise of the Yb:KYW os-
cillator (see the orange trace in Figure 6.21). A common technique for achieving higher
feedback bandwidths in mode-locked oscillators is to modulate the pump power. How-
ever, the relatively long upper state lifetime of Yb:KYW limits the achievable bandwidth
to a few tens of kHz [214]. A feedback bandwidth of 700 kHz has been achieved in a
solid-state frequency comb by using an intra-cavity electro-optic modulator (EOM) [215].
However, adding an EOM to the laser cavity introduces additional dispersion and losses.
The dispersion has to be compensated in order to achieve mode-locked operation, while the
losses reduce the achievable output power [215]. We therefore decided to use an external
acousto-optic modulator (AOM) as a fast actuator for adjusting the laser frequency [216].

The setup is shown schematically on the right of Figure 6.19. The output of the
Yb:KYW oscillator is first amplified to around 100 mW. It then passes through the AOM33

which is driven by a voltage-controlled oscillator34 (VCO). The VCO was chosen for its
relatively small tuning port capacitance of 82 pF which allows fast tuning of the output
frequency. A beat note between one comb mode and the cw laser is then generated using
a second beat detection setup. In this way a failure of the fast feedback loop does not
affect the slow one. The beat note signal is isolated with a low-pass filter and is amplified.
Acquiring the phase lock does not require a large phase range since the frequency is pre-
stabilized by the slow feedback loop. An analog RF mixer is therefore used to detect the
phase difference relative to a reference signal at 9 MHz. The feedback loop is closed by a
fast analog loop filter35 which acts on the tuning port of the VCO. One challenge is that
the tuning range of the VCO is much larger than that of the AOM. Furthermore, the AOM
is used in single-pass such that the angle of the output depends on the driving frequency. A
failure of the feedback loop could therefore “turn off” the laser beam if the VCO frequency
is changed too much. This might lead to damages in the laser amplifiers. The output range
of the loop filter is therefore limited such that it can only change the VCO frequency by a
few hundred kHz. The center frequency is adjusted by adding an offset voltage to the loop
filter output using an operational amplifier.

The bandwidth of a feedback loop is ultimately limited by the total time delay of the
signal propagating in the loop. An AOM consists of a transparent glass or crystal in which
a travelling acoustic wave is generated by a piezoelectric transducer. The frequency of a
laser beam passing through the material is shifted by the interaction with the periodic
density modulation caused by the acoustic wave. The acoustic wave travels at the speed
of sound in the AOM material which is around five orders of magnitude slower than the
propagation of electrical signals in coaxial cables. Minimizing the distance between the
laser beam and the AOM transducer is therefore crucial for achieving a large feedback

33AA MT110-B50A1-1064.
34Pasternack PE1V31008.
35Vescent Photonics D2-125 Laser Servo.
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Figure 6.20: Measurement of the time delay in the AOM due to the finite speed of the
acoustic wave (blue circles). The AOM drive signal was turned off with a fast RF switch,
and the time delay until the diffracted power started dropping was measured with a fast
photodiode. The orange line is a linear fit to the data which gives a speed of sound of
4.2 km/s, in agreement with the data sheet value for the TeO2 AOM crystal.

bandwidth.36 The laser beam is loosely focused through the AOM with an f = 200 mm
lens to reduce the beam size. The AOM is placed on a linear stage such that the position
perpendicular to the laser beam can be adjusted. As shown in Figure 6.20, a minimum
delay of around 110 ns can be achieved before the beam is being clipped by the transducer.
The resulting feedback bandwidth is around 600 kHz.

The residual in-loop phase noise achieved by the feedback systems is shown in Fig-
ure 6.21. The phase noise is extracted from the beat note signal using an RF spectrum
analyzer37 as described in subsection 6.2.4. The mean square integrated phase noise from
10 Hz to 10 MHz is 1260 mrad2, corresponding to an rms phase noise of 35.5 mrad. With-
out further noise suppression, this level of phase noise would already lead to a drop of
the carrier power at the 34th harmonic by a factor of four (see Figure 6.3). The dashed
curve in Figure 6.21 shows that most of the phase noise is contributed by spectral compo-
nents with Fourier frequencies above 1 MHz which is beyond the feedback bandwidth. In
this frequency range the phase noise level is close to the noise floor such that an accurate
measurement is difficult.

36In some AOMs this is only possible by modifying the casing.
37Agilent E4445A.
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Figure 6.21: Single sideband phase noise of the beat note between the cw laser and one
mode of the Yb:KYW oscillator. The signal is recorded at the output of the second beat
detection setup which is also used for the fast feedback. The phase can be stabilized using
the slow piezoelectric actuators only (orange trace), but much better noise suppression is
achieved by adding the fast AOM feedback (blue trace). The detection noise floor is due
to amplitude noise of the cw laser (green trace). The dashed blue curve shows the mean
square integrated phase noise calculated from the blue trace.

Phase noise filtering in the enhancement cavity

As shown in Figure 6.15, the HHG takes place in an enhancement cavity. While its main
purpose is to increase the light intensity, the cavity also filters out phase noise that falls
outside the linewidth of the resonances. The design of the cavity has not yet been finalized,
but measurements on a preliminary version give a finesse of around 190. The free spectral
range is 40 MHz to match the comb repetition rate. This results in an FWHM linewidth
of 211 kHz. By averaging over fast phase fluctuations, the cavity acts as a low-pass filter
with a slope of −20 dB/decade for Fourier frequencies above the HWHM linewidth (see
subsection 6.2.4). Figure 6.22 shows the expected filtering effect by the cavity. The mean
square integrated phase noise of the signal from 10 Hz to 10 MHz is 55.5 mrad2, correspond-
ing to an rms phase noise of 7.4 mrad. This is well below the carrier collapse threshold for
generating the 34th harmonic (see Figure 6.3).
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Figure 6.22: Expected phase noise filtering by the enhancement cavity. The orange trace is
the measured phase noise as shown in Figure 6.21. The red trace shows the expected phase
noise of the light circulating in an enhancement cavity with a 106 kHz HWHM linewidth.
The frequency range above the HWHM linewidth is shown in light blue. The dashed red
curve shows the mean square integrated phase noise calculated from the red trace.

6.3.4 Path length stabilization
The frequency stabilization setup tightly locks the phase of one frequency comb mode to
that of the cavity-stabilized cw laser at the position of the second beat detection. However,
the frequency comb laser beam then travels through several more components before being
coupled into the enhancement cavity for HHG (see Figure 6.15). These components include
the second preamplifier, the high power amplifier, and the multi-pass cells for nonlinear
pulse compression. The high average power levels of up to 400 W lead to significant heating
of the components and of the air in the beam path. An active beam pointing stabilization
system38 is used to compensate for the resulting thermal alignment drifts and fast pointing
fluctuations. These thermal effects, as well as mechanical vibrations of the mirrors, also
lead to fluctuations in the optical path length which introduce additional phase noise.
Path length fluctuations have been observed to significantly broaden the linewidth of XUV
frequency combs generated in similar setups [188].

We have therefore implemented an active path length stabilization system that is shown
schematically in Figure 6.23. A small part of the frequency comb light is split off close

38TEM Messtechnik Aligna.
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Figure 6.23: Path length stabilization setup. This is a more detailed view of the light blue
box in Figure 6.15. The beat detection is placed close to the enhancement cavity such that
most fluctuations can be compensated. LP filter, low-pass filter; SP, RF splitter; VCO,
voltage-controlled oscillator; AOM, acousto-optic modulator.

to the enhancement cavity. A beat note is being generated with light from the cw laser.
This light is taken from before the fiber amplifier in order to avoid potential phase noise
contributions due to path length fluctuations in the gain fiber. A second AOM39 is used as
an actuator for giving feedback to the frequency of the comb modes. The AOM is placed
behind the second preamplifier, but before the high power amplifier and pulse compression
units. In this way the AOM only has to handle around 2.8 W of optical power, and the
material dispersion is less critical. However, the light cannot be focused as tightly as in the
frequency stabilization setup due to the higher intensity. This leads to a larger travel time
of the acoustic wave in the AOM which limits the feedback bandwidth to 300 kHz. The
feedback electronics are identical to those of the fast feedback (see section 6.3.3), except
that a 1.9 MHz low-pass filter is used for the error signal. This reduces the amount of
noise entering the loop filter, while the larger delay of the AOM makes the phase delay
introduced by the filter unimportant.

Figure 6.24 shows the resulting in-loop phase noise measured at the output of the
beat detection setup. Without stabilization a large amount of phase noise is visible in
the frequency range up to a few kHz. The feedback loop manages to suppress most of
these fluctuations such that a noise level close to the one shown in subsection 6.3.3 is
achieved. After the high power amplifier and the spectral broadening, the frequency comb
light contains much more power in the spectral region that matches the cw laser. The
signal-to-noise ratio is therefore significantly higher than in the first two beat detection
setups which results in a lower noise floor. The AOMs in the feedback systems are aligned

39Gooch & Housego 3110-197.
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Figure 6.24: Single sideband phase noise measured in the path length stabilization setup.
The orange trace is the phase noise without active stabilization and the blue trace with sta-
bilization. For comparison, the in-loop phase noise between the cw laser and the Yb:KYW
oscillator (blue trace in Figure 6.21) is shown in gray. The detection noise floor is due to
the amplitude noise of the cw laser (green trace). The dashed blue curve shows the mean
square integrated phase noise calculated from the blue trace.

such that most of the light is scattered into the +1st diffraction order. However, they also
produce other diffraction orders, and a small amount of light from these orders leaks into
the main beam. These components beat with the cw laser light and lead to the spurious
signals visible in the phase noise plot in the MHz range. The beat note frequencies are
chosen such that the spurs lie outside the feedback bandwidth and the linewidth of the
enhancement cavity. They are therefore not expected to significantly influence the spectral
purity of the generated XUV frequency comb. The integrated phase noise of the stabilized
in-loop signal (blue trace) is 41 mrad. As described in section 6.3.3, the enhancement cavity
is expected to filter out high-frequency components. After numerically filtering the signal
with the theoretical noise transfer function of the cavity, a mean square integrated phase
noise of 186 mrad2 is reached which corresponds to an rms phase noise of 14 mrad. With
this amount of phase noise at the fundamental wavelength, 80 % of the power remain in
the carrier at the 34th harmonic (see Figure 6.3).



Chapter 7

Conclusion and outlook

During this thesis work we have set up an ion trap and vacuum system in which spec-
troscopy of the 1S-2S transition in He+ can be performed. We have demonstrated that
dark ions can be tracked in real time with single-particle resolution using the secular ex-
citation method. This will be used as a sensitive and background-free detection scheme
for locating the spectral line. A low-noise driving laser system was constructed which is
expected to achieve a narrow linewidth even after frequency multiplication to the XUV.
In parallel to the work presented here, an XUV frequency comb source based on cavity-
enhanced high harmonic generation was set up in our group. Once this system achieves
sufficient power at 60.8 nm, a search for the spectral line can be started.

An interesting intermediate step is to use a lower harmonic of the frequency comb to
excite a two-photon transition in Be+. This will be briefly sketched in the following.

7.1 Two-photon excitation of Be+

Figure 7.1 shows the first few excited states of Be+. The 3d level is located 98 055 cm−1

above the ground state [103]. The 2s-3d two-photon transition can therefore be driven by
light at a wavelength of 204.0 nm. Due to the spectral broadening in the multi-pass cells
(see Figure 6.15), the laser beam that drives our high harmonic generation has a strong
spectral component at 1020 nm. We expect that with suitable spectral filtering, the system
can be adapted such that the 5th harmonic of the laser beam matches the wavelength of
the two-photon transition in Be+.

The 3d state decays predominantly to the 2p state with a rate of Γ = 2π×176 MHz [217].
The resulting natural linewidth is much larger than the mode spacing given by the rep-
etition rate of the frequency comb (frep = 40 MHz) such that the comb structure of the
excitation spectrum will not be resolved (see subsection 3.2.1). The excitation rate is
therefore independent of the comb mode frequencies, and line broadening effects such as
Doppler broadening are unimportant. Nonetheless, the excitation rate can be used as a
signal for optimizing the alignment of the spectroscopy laser beam onto the ions.
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Figure 7.1: Simplified level scheme of Be+. With suitable spectral filtering, the 2s-3d two-
photon transition can be excited using the 5th harmonic of the driving laser system of our
high harmonic generation setup.

Excitation dynamics

As described in section 3.4, we are going to excite the 1S-2S transition in He+ with counter-
propagating pulses which have to meet at the position of the ions. This pulse overlap can
also be optimized using the two-photon excitation of Be+. In our setup the counter-
propagating pulses are produced in a Mach-Zehnder interferometer in the driving laser
system (see section 6.3.1). The position of the pulse collision volume can therefore be
changed by adjusting the length of the interferometer which leaves the focus position and
laser intensities unchanged.

Since the frequency comb structure is not resolved, the excitation dynamics can be
described by considering the interaction between one Be+ ion and a series of individual
resonant laser pulses. For mathematical convenience we assume square pulses with a pulse
duration τ . During each pulse, the atom performs Rabi oscillations. Since typical pulse
durations of a few ten fs are much shorter than the excited state lifetime Γ−1 = 0.90 ns,
the population decay during a pulse is negligible. The probability of having excited the
ion after a pulse with intensity I is then given by [27, p. 137]

Pe = sin2
(

Ω2pτ

2

)
, (7.1)

where Ω2p = 2(2πβge)I is the two-photon Rabi frequency during the pulse with the two-
photon matrix element βge [91] (see also chapter 3).

We assume that the transition is only weakly driven such that the Rabi angle Ω2pτ
is much smaller than unity. The excited state probability after the pulse can then be
approximated by

Pe ≈
Ω2

2pτ
2

4 = (2πβge)2I2τ 2. (7.2)
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During one pulse repetition time of the frequency comb (T = 1/frep = 25 ns), the ion
interacts with the pulse pair and with its reflection as shown in Figure 7.2.

(a)

(b)

Figure 7.2: Schematic of pulse overlapping using two-photon excitation of a Be+ ion (red
dot in the insets). The graphs show the pulse sequence at the ion position during one
pulse repetition time of the frequency comb. I1 is the intensity of the first pulse, I2 is
the intensity of the second pulse, and R is the reflectivity of the XUV mirror. (a) No
pulse overlap. The ion “sees” four individual pulses. (b) The reflection of the first pulse
is overlapped with the second pulse which leads to a standing wave with intensity I12(x),
where x is the ion position. Due to the nonlinear behavior of the two-photon excitation,
the excitation probability differs between the two cases.

We start with the case of non-overlapping pulses. In practice the delay line is first
coarsely adjusted such that the pulse-to-pulse spacing matches the distance between the
ion trap and the XUV mirror to within a few mm. The second pulse and the reflection of
the first pulse then arrive at the ion position within a time interval that is much shorter
than the excited state lifetime. The interaction with the two mutually coherent pulses
leads to Ramsey fringes in the excitation probability if the phase delay between the pulses
is scanned [218]. Since the pulses are counter-propagating, the phase delay also depends on
the position of the ion. The spatial period of the Ramsey fringes is given by the transition
wavelength1 of 102 nm. The axial micromotion measured in our trap (see subsection 4.7.3)
corresponds to a peak-to-peak excursion of around 90 nm such that the Ramsey fringes
are “averaged out” by the ion motion. In the following we therefore assume that the ion
interacts with all four pulses separately. The probability of having excited the ion after

1The two-photon excitation effectively doubles the carrier frequency of the excitation laser pulses.
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the interaction is thus given by

P n.o.
e = (2πβge)2τ 2(I2

1 + I2
2 +R2I2

1 +R2I2
2 )

= (2πβge)2τ 2(1 +R2)(I2
1 + I2

2 ), (7.3)

where I1 is the intensity of the first pulse, I2 is the intensity of the second pulse, and R is
the reflectivity of the XUV mirror.

If the delay line is correctly adjusted, the reflection of the first pulse completely overlaps
with the second pulse at the position of the ion (see Figure 7.2 (b)). The two pulses then
form a standing wave with an intensity

I12(x) = RI1 + I2 + 2
√
RI1I2 cos(2kx), (7.4)

where k = 2π/204 nm is the laser pulse wave number, and x is the position of the ion. Like
the Ramsey fringes, the standing wave pattern is averaged out by the micromotion. For
typical trap parameters the ion is only localized to within a few ten nm which is expected
to further reduce the effective modulation depth of the standing wave. We estimate the
excitation probability by taking the spatially averaged intensity:

I12 ≈ ⟨I12(x)⟩ = RI1 + I2. (7.5)

This is a conservative estimate since

⟨I12(x)⟩2 = (RI1 + I2)2 < (RI1 + I2)2 + 2RI1I2 = ⟨I12(x)2⟩. (7.6)

The resulting excitation probability is

P o.
e = (2πβge)2τ 2(I2

1 + (RI1 + I2)2 +R2I2
2 )

= (2πβge)2τ 2(1 +R2)(I2
1 + I2

2 )
(

1 + 2 R

1 +R2
I1I2

I2
1 + I2

2

)
. (7.7)

If the pulses are successfully overlapped at the ion position, the excitation rate will therefore
increase by

η = P o.
e

P n.o.
e

= 1 + 2 R

1 +R2
I1I2

I2
1 + I2

2
. (7.8)

Our XUV mirrors have a reflectivity of R = 43 % at 204 nm. For equal pulse intensities
(I1 = I2), we obtain η = 1.36.

Electron shelving detection

The excitation of Be+ ions to the 3d state can be detected with very high sensitivity using
electron shelving. The Be+ ions are first brought into the 2s 2S1/2(F = 2,mF = ±2)
stretched state using the σ± polarized cooling laser and the repumper (see section 2.5).
The cooling laser is then turned off, and the ions are illuminated with the 204 nm light. If
the ions are successfully excited to the 3d state, they decay back to the ground state via the
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2p state and can end up in the 2s 2S1/2(F = 1) hyperfine manifold. The cooling laser is then
turned back on without the repumper. It is off-resonant from the 2s 2S1/2(F = 1) → 2p
2P3/2 transition by the ground state hyperfine splitting of 1.25 GHz. Successful excitation
of the 2s-3d two-photon transition therefore manifests itself as a drop in the detected
fluorescence intensity.

We have tested the detection scheme by driving transitions between the F = 2 and
F = 1 ground state hyperfine manifolds using microwave radiation. A single Be+ ion was
prepared in the (F = 2,mF = −2) state as described above. The ion was then either left
in this state, or brought to the (F = 1,mF = −1) state by applying a π-pulse of microwave
radiation that was resonant with the transition frequency between the two states (around
1.25 GHz). The state was then read out by applying the cooling laser without the repumper
for 100 µs and counting the number of fluorescence photons detected by one of the PMTs.
The sequence was repeated 1000 times for each state which resulted in the photon count
distributions shown in Figure 7.3 (left). By associating zero detected photons with the
(F = 1,mF = −1) state, and one or more photons with the (F = 2,mF = −2) state, the
state can be correctly identified in 94 % of cases.
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Figure 7.3: Detection of the hyperfine state of a single Be+ ion using electron shelving.
The left plot shows histograms of detected photon counts when the ion was prepared in
the (F = 2,mF = −2) state (blue), or in the (F = 1,mF = −1) state (orange). The right
plot shows how the detected mean photon number depends on the wait time between state
preparation and readout (same color code).

We then inserted a variable wait time between the state preparation and readout. This
simulates the time during which the 204 nm light for the two-photon excitation will be
applied. As shown in Figure 7.3 (right), the detected photon numbers change only slightly
with different wait times. The probability of detecting the correct state remained above
91 % in all cases.
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5th harmonic generation in nonlinear crystals

In principle the XUV frequency comb source generates all odd harmonics of the infrared
driving laser. If sufficient intensity is available after spectral filtering, it could therefore
be used for exciting the 2s-3d transition in Be+. However, a simpler and more efficient
technique is to use nonlinear crystals for the frequency multiplication. This means that
the enhancement resonator shown in Figure 6.15 is bypassed, and the light is sent into a
separate frequency conversion unit instead. The generated 5th harmonic is then guided
through a viewport into the high harmonic generation vacuum chamber. There, a mirror
for 204 nm is inserted which sends the light along the beam line for the XUV frequency
comb (see Figure 4.24).

A simplified scheme for a frequency conversion unit is shown in Figure 7.4. It is based
on a design for generating the 5th harmonic of a mode-locked fiber laser at 1040 nm that
was developed in the group of Y. Kobayashi at the University of Tokyo [219].

LBO

DM
BBO

BBO

DM

Delay line

Figure 7.4: Simplified scheme for generating the 5th harmonic using nonlinear crystals.
The fundamental light is frequency doubled twice in an LBO crystal and a BBO crystal. It
is then overlapped with the residual light at the fundamental frequency in a second BBO
crystal. Here, the 5th harmonic is generated as the sum frequency of the two inputs. The
delay line is used to temporally overlap the pulses in the second BBO crystal. DM; dichroic
mirror.

By adjusting the phase matching angles in the nonlinear crystals, the design can be
adapted for operation at 1020 nm. First, the light is frequency doubled in a lithium borate
(LBO) crystal. The fundamental is then separated from the second harmonic using a
dichroic mirror. The second harmonic is then frequency doubled again in a β-barium
borate (BBO) crystal. Finally, the fourth harmonic and the fundamental are overlapped in
a second BBO crystal. There, the 5th harmonic is generated by sum frequency generation.
In [219] the authors demonstrated an average output power of up to 0.3 mW. This power
was limited by the available input power of 3 W, and none of the nonlinear processes were
close to saturation.2 The infrared frequency comb of our high harmonic generation setup
has a similar pulse duration and repetition rate, but reaches average powers of more than

2A. Ozawa, private communication.
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200 W. Even when taking into account losses due to spectral filtering, we expect that a
similar setup should produce substantially more output power using our driving laser.
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Appendix A

Objective design data

Table A.1: Parameters of the objective for horizontal imaging.
Surface Radius of curvature (mm) Distance to next surface (mm) Material
Object 70.00 vacuum

1 ∞ 6.35 fused silica
2 ∞ 14.36 air
3 ∞ 4.42 air
4 −193.40 6.60 fused silica
5 −63.00 1.24 air
6 ∞ 6.60 fused silica
7 −92.00 1.42 air
8 183.00 6.50 fused silica
9 −183.00 16.69 air
10 −91.80 2.50 fused silica
11 ∞ 780.10 air
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Table A.2: Parameters of the objective for vertical imaging.
Surface Radius of curvature (mm) Distance to next surface (mm) Material
Object 64.48 vacuum

1 ∞ 9.50 fused silica
2 ∞ 15.59 air
3 ∞ 5.91 air
4 −193.40 6.60 fused silica
5 −63.00 1.63 air
6 ∞ 6.60 fused silica
7 −92.00 1.72 air
8 183.00 6.50 fused silica
9 −183.00 17.53 air
10 −91.80 2.50 fused silica
11 ∞ 803.28 air
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Figure A.1: Spot diagrams of the vertical objective simulated by the ray tracing software.
The plots show how much rays originating from a single reference point in the object plane
spread out in the image plane due to aberrations. In the left plot the reference point is
on the axis of the objective, and in the right plot it is 0.5 mm from the axis. The red
circles indicate the sizes of the Airy disks. This is a common measure for the spot size of
a diffraction-limited imaging system [115].
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Figure A.2: Optical path difference (OPD) plots for the vertical objective. The path
differences are measured relative to a reference ray that crosses the center of the input
aperture of the imaging system. The rays originate on-axis (blue) and 0.5 mm off-axis
(orange). The aperture fraction measures how far from the center the rays cross the input
aperture. A value of 1 corresponds to marginal rays that hit the edge of the aperture.
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Appendix B

Micromotion fluorescence fit function

In the rest frame of an ion that experiences micromotion, the cooling laser appears phase
modulated at the trap frequency Ω with a modulation index β. The electric field of the
cooling laser is then given by

E(t) = E0

2 ei[β cos(Ωt)−ωt] + c.c., (B.1)

where E0 and ω are the electric field amplitude and frequency of the cooling laser, re-
spectively. We assume that the ion is laser cooled on a cycling transition with circularly
polarized light (see section 2.5). The electronic states of the ion can therefore be approx-
imated by a two-level system with the ground state |g⟩ and the excited state |e⟩. The
cooling transition has the frequency ω0 and the FWHM linewidth Γ.

The electronic state of the ion is described by the density matrix in the rotating frame
(see for example Chapter 5 in [94]):

ρ =
(
ρgg ρ′

ge

ρ′
eg ρee

)
, (B.2)

where ρgg and ρee are the populations of the ground state and excited state, respectively,
and ρ′

ge and ρ′
eg = ρ′∗

ge are the coherences in the rotating frame.
The coupled differential equations that describe the time evolution of ρ are called the

optical Bloch equations. A derivation for the present system can be found in [113], so we
here just write down the results:

ρ̇gg = −iΩR

2 (ρ′
gee

iβ cos(Ωt) − ρ′
ege

−iβ cos(Ωt)) + Γρee, (B.3)

ρ̇ee = i
ΩR

2 (ρ′
gee

iβ cos(Ωt) − ρ′
ege

−iβ cos(Ωt)) − Γρee, (B.4)

ρ̇′
ge = −i∆ρ′

ge + i
ΩR

2 e−iβ cos(Ωt)(ρee − ρgg) − Γ
2 ρ

′
ge, (B.5)

ρ̇′
eg = i∆ρ′

eg − i
ΩR

2 eiβ cos(Ωt)(ρee − ρgg) − Γ
2 ρ

′
eg, (B.6)
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where ΩR = dE0/ℏ is the Rabi frequency with the transition dipole matrix element d, and
∆ = ω − ω0 is the cooling laser detuning. In the experiment the saturation parameter s is
measured which is related to the Rabi frequency by s = 2Ω2

R/Γ2.
The time-dependent fluorescence rate detected by the PMT is given by

R(t) = ηΓρee(t+ φ0/Ω), (B.7)

where η is the total photon detection efficiency, and φ0 ∈ [0, 2π] accounts for the phase
offset between the micromotion and the photon detection.

For a given set of parameters, ρee(t) is calculated by numerically integrating Equa-
tions B.3-B.6. One typical example for the time evolution is shown in Figure B.1. After
a short transient phase, ρee(t) regularly fluctuates in sync with the trap RF cycles. We
typically simulate the evolution for 20 RF cycles. The last two cycles of the result are
used for evaluating Equation B.7. A least squares fitting algorithm is then used to find
the parameters that best match the experimental data. The free parameters determined
by the fit are β, η, and φ0, whereas ∆ and s were measured separately.
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Figure B.1: Numerical solution of the optical Bloch equations for an ion experiencing
micromotion. The parameters are Ω = 2π×65 MHz, s = 1.0, Γ = 2π×18 MHz, ∆ = −Γ/2,
and β = 0.5. The inset (same axes) shows in orange the part of the solution that is used
for fitting the experimental data.
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