Strong-field QED PIC simulation

Constantin Klier ${ }^{1,2}$, Hartmut Ruhl ${ }^{1}$

${ }^{1}$ Fakultät für Physik, LMU München, Theresienstraße 37A
${ }^{2}$ IMPRS APS, Max-Planck Institut für Quantenoptik, Garching

Motivation

At laser intensities beyond $10^{25} \frac{\mathrm{~W}}{\mathrm{~cm}^{2}}$ QED processes will become essential to understand laser propagation and laser plasma interaction. We extend a PIC code to study this question.

Induced processes

Strong Field processes depend on the field scalars $\mathcal{S}=\left(\mathbf{E}^{2}-\mathbf{B}^{2}\right) / E_{S}^{2}, \mathcal{P}=\mathbf{E} \cdot \mathbf{B} / E_{S}^{2}$ and on the dyanmical quanum parameters of the seed particle, an electron or positron with velocity \mathbf{v}, or a γ-photon with momentum k^{μ}

$$
\begin{equation*}
\chi=\frac{e \hbar}{m^{3}} \sqrt{-\left(F_{\mu \nu} p^{v}\right)^{2}} \quad \text { and } \quad \kappa=\frac{e \hbar}{m^{3}} \sqrt{-\left(F_{\mu \nu} k^{v}\right)^{2}} \tag{1}
\end{equation*}
$$

Probability rates of induced QED processes in a general external field can be expressed as $W(\chi, \mathcal{S}, \mathcal{P})$. For $\chi \gg \mathcal{S}, \mathcal{P}$ and $\mathcal{S}, \mathcal{P} \ll 1$ processes in arbitrary external fields approach those in a constant crossed field $\mathcal{S}=\mathcal{P}=0$ of the same strength,

$$
W(\chi, \mathcal{S}, \mathcal{P}) \xrightarrow{\chi \gg \mathcal{S}, \mathcal{P}} W(\chi, 0,0)
$$

In a constant crossed field the probability ra-
te of an electron at energy ϵ radiation a γ -
photon with energy ω is

$$
\begin{aligned}
\frac{\mathrm{d} W_{\mathrm{rad}}}{\mathrm{~d} \omega}(\omega \mid \epsilon) & =\frac{\alpha m^{2}}{\epsilon^{2}}\left[\int_{x}^{\infty} \mathrm{Ai}(\xi) \mathrm{d} \xi+\left(\frac{2}{y}+\kappa \sqrt{x}\right) \mathrm{Ai}^{\prime}(x)\right]_{x=\left[\frac{\kappa}{\chi(\chi-\kappa)}\right]^{2 / 3}} \\
& =1.44 \frac{\alpha m^{2}}{\epsilon} \chi(1-0.924 \chi)+O\left(\chi^{3}\right)
\end{aligned}
$$

and of a γ-photon with energy ω converting to a pair of electron and positron is

$$
\frac{\mathrm{d} W_{\text {pair }}}{\mathrm{d} \epsilon}(\epsilon \mid \omega)=\frac{\alpha m^{2}}{\omega^{2}}\left[\int_{y}^{\infty} \operatorname{Ai}(\xi) \mathrm{d} \xi+\left(\frac{2}{y}-\kappa \sqrt{y}\right) \mathrm{Ai}^{\prime}(y)\right]_{y=\left[\frac{\kappa}{\chi(\kappa-\chi)}\right]^{2 / 3}}
$$

$$
\xrightarrow{\kappa \rightarrow 0} 0.230 \frac{\alpha m^{2}}{\omega} \kappa \mathrm{e}^{-\frac{8}{3 \kappa}}
$$

Spontaneous pair creation

Spontaneous creation of an electron positron pair from vacuum by an electromagnetic field with invariants \mathcal{S} and \mathcal{P} is governed by the invariant electric field parameter $a=\sqrt{\sqrt{\mathcal{S}^{2}+\mathcal{P}^{2}}-\mathcal{S}}$ and the invariant magnetic field parameter $b=\sqrt{\sqrt{\mathcal{S}^{2}+\mathcal{P}^{2}}+\mathcal{S}}$

$$
\begin{equation*}
W_{\text {spont }}=\frac{e^{2} a b}{8 \pi^{2}} \operatorname{coth}\left(\frac{b}{a}\right) \exp \left[-\frac{1}{a}\right] \tag{2}
\end{equation*}
$$

Particles are produced in the rest frame of the electromagnetic field, therefore can acquire a high boost factor with respect to the lab frame. This is the case if asymmetric pulses are used ([LR11], [KRLR12]). In this case $r=\frac{a_{0}^{\mathrm{w}} \omega^{\mathrm{w}}}{a_{0}^{\mathrm{s}} \omega^{s}} \leq 1$.

The rapidity y_{S} of the moving rest frame (left scale) and expected number of pairs (right scale) for $r=1,0.1,0.01$ at fixed $a_{0}^{\mathrm{s}} \omega^{\mathrm{s}} / m=$ 1.

References

[FNMK10] A. M. Fedotov, N. B. Narozhny, G. Mourou, and G. Korn, Limitations on the attainable intensity of high power lasers, Phys. Rev. Lett. 105 (2010), 080402.
[KRLR12] C. Klier, H. Ruhl, L. Labun, and J. Rafelski, Laser collisions and spectra of particles, in preparation (2012).
[LR11] L. Labun and J. Rafelski, Spectra of particles from laser-induced vacuum decay, Physical Review D 84 (2011), no. 3, 033003.

PIC-Method

The kinetic approach leads to Boltzmann-type equations for charged particle and hard photon distribution functions

$$
\begin{aligned}
\left(\partial_{t}+\mathbf{v} \cdot \partial_{\mathbf{x}}+\mathbf{F} \cdot \partial_{\mathbf{p}}\right) f_{ \pm}(\mathbf{x}, \mathbf{p}, t) & =\int \mathrm{d}^{3} k \frac{\mathrm{~d} W_{\text {rad }}^{\mathbf{E}, \mathbf{B}}}{\mathrm{d}^{3} k}(\mathbf{k}, \mathbf{p}+\mathbf{k}) f_{ \pm}(\mathbf{x}, \mathbf{p}+\mathbf{k}, t) \\
& -f_{ \pm}(\mathbf{x}, \mathbf{p}, t) \int \mathrm{d}^{3} k \frac{\mathrm{~d} W_{\text {rad }}^{\mathbf{E}, \mathbf{B}}}{\mathrm{d}^{3} k}(\mathbf{k}, \mathbf{p})+\int \mathrm{d}^{3} k \frac{\mathrm{~d} W_{\text {pair }}^{\mathbf{E}, \mathbf{B}}}{\mathrm{d}^{3} p}(\mathbf{k}, \mathbf{p}) f_{\gamma}(\mathbf{x}, \mathbf{k}, t)
\end{aligned}
$$

$\left(\partial_{t}+\frac{c^{2} \mathbf{k}}{\omega} \frac{\partial}{\partial \mathbf{x}}\right) f_{\gamma}(\mathbf{x}, \mathbf{k}, t)=\int \mathrm{d}^{3} p \frac{\mathrm{~d} W_{\text {rad }}^{\mathbf{E}, \mathbf{B}}}{\mathrm{d}^{3} k}(\mathbf{k}, \mathbf{p})\left[f_{+}(\mathbf{x}, \mathbf{p}, t)+f_{-}(\mathbf{x}, \mathbf{p}, t)\right]-f_{\gamma}(\mathbf{x}, \mathbf{k}, t) \int \mathrm{d}^{3} p \frac{\mathrm{~d} W_{\text {pair }}^{\mathbf{E}, \mathbf{B}}}{\mathrm{d}^{3} p}(\mathbf{k}, \mathbf{p})$ Expanding the distribution functi-
 ons in quasiparticles $f_{\gamma}(\mathbf{x}, \mathbf{k}, t)=$ $\frac{n_{\gamma}}{N_{\gamma}(0)} \sum_{i=1}^{N_{\gamma}(t)} \phi_{\gamma}\left(\mathbf{x}-\mathbf{x}_{i}^{\gamma}\right) \delta^{3}\left(\mathbf{k}-\mathbf{k}_{i}\right)$ and $f_{ \pm}(\mathbf{x}, \mathbf{p}, t)=\frac{n_{ \pm}}{N_{ \pm}(0)} \sum_{i=1}^{N_{-}(t)} \phi_{-}\left(\mathbf{x}-\mathbf{x}_{i}^{ \pm}\right) \delta^{3}\left(\mathbf{p}-\mathbf{p}_{i}^{ \pm}\right)$ one obtains a PIC code for a plasma of electrons, positrons and photons interacting by radiadion process and pair creation.

Laser collision at $I_{0}=5 \times 10^{26} \frac{\mathrm{~W}}{\mathrm{~cm}^{2}}$

Collision of 6 pulses: along each axis, x, y, z two pulses are colli-
ding. Setup at start of simulation $1 \mu \mathrm{~m}$ from focus.

Evolution of particle and photon numbers

Density of particles,
projection in $y-z$ plane

Density of photons, projection in $y-z$ plane

