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1. Introduction and motivation

In both laser wakefield and laser acceleration in vacuum the accelerating electrons oscillate due to transverse electric field components (in laser wakefield only off-axis electrons exhibit betatron oscillations) [1,2].
The oscillating electrons emit radiation and these radiation react back on them. For Low energies electron beam, the radiation effects are small, however, for high energies, the effects of emitted radiation become
severe. For example, in a Laser Wakefield Accelerator (LWFA) the transverse focusing field is of the order of the longitudinal field. The trapped electrons exhibit betatron oscillations due to the strong focusing force
along with the accelerating force. The oscillating electrons radiate in a similar fashion as do electrons in an undulator field [1]. The amount of energy radiated by an electron can be substantial. It may have a
significant effect on the evolution of the electron beam.
Currently relativistic electron bunches with charge>pC are being produced in the laser wakefield [10,11,12], which means that it contains> 109 particles. One feels that if the radiation of a single electron inside the
beam affects its own motion [2,4,5,6,13] then it should affect the motion of the other electrons of the beam for certain given parameters. Therefore, there is a need to investigate the accumulated effects of radiation
on electron motion.

2. Equation of motion of an electron

The Lorentz-Abraham-Dirac (LAD) equation describes the motion of a radiating electron

mu̇α = −
e
c

Fαβuβ + mτo

(
üα − u̇βu̇βuα/c2

)
, (1)

where τo = e2/6πεomc3. However, It has unphysical solutions like: preacceleration and runaway (for
review see [8]). Later on some other models have been developed to avoid these unphysical solutions by
Landau and Lifshitz [9], Mo and Papas , Caldirola, Yaghjian and Sokolov [8]. However, the Landau-Lifshitz
(LL) equation provides a good first order approximation of the LAD equation. It can be obtained by the
perturbative expansion of the equation of motion [9]
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it does not have unphysical solutions. The above perturbative expansion of the LAD equation is valid if
Frad � FL. The radiation fields produced by a radiating electron are known as Lienard-Wiechert fields and
are given by
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~BLW = ~k × ~ELW , (4)
The retarded quantities (~R(t ′), ~β(t ′), etc) can be expanded about the current time t for electron bunches of much smaller

duration
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+ · · ·+ nonlinear terms. (5)

the R(t) is given by the relation [7]

R = Rβ + d, ⇒ R =
d
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z

(6)

3. Analytical solution

The Landau-Lifshitz equation for a particle under radiation effects of other particles in three vector notation
can be written as
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The subscript ”rad” in equation (7) stands for retarded fields. For linearly polarized plane wave equation
(7) can be written as
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where ao = eEo/(meωLc) is the normalized laser intensity, σ = Ze2/(4πεomec2d), γ − pz = K , and
τ = t − z. We have also assumed that for an electron moving in the −z direction with large initial energy
vx � vz . The solutions of equations (8)-(10) give the value of p(2)
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And for circularly polarized plane wave
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and solution is given by
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equation (20) gives the longitudinal momentum and energy of the particle P2. We have studied the motion
of an electron counter propagating to the laser pulse as shown in Figure 1.

4. Results
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Figure 1: The electron laser interaction model
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Figure 2: (a) The transverse velocity vx , (b) the longitudinal velocity vz, and (c) the Lorentz factor γ as a function of lab time t of
particle P2 with γo = 1000 for a linearly polarized wave with ao = 100. The red dashed line represents the motion with the LL
equation plus retarded effects, solid blue line stands for the LL equation and solid black line shows motion by the Lorentz
equation.
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Figure 3: (a) The transverse velocity vx , (b) the longitudinal velocity vz, and (c) the Lorentz factor γ as a function of lab time t of
particle P2 with γo = 1000 for a circularly polarized wave with ao = 100. The colour scheme as mention earlier

0 6 �103 1.3�103
0

1.5

3

�105

ΩΒot

<
Γ

>

0 6 �103 1.3�103
0.000

0.002

0.004

0.006

0.008

0.010

ΩΒot

Σ
Γ

�
<

Γ
>

0 6 �103 1.3�103
2068

2700

3200

ΩΒot

Ε x
HΜ

m
L

(a)

0 6 �103 1.3�103
0

1.5

3

�105

ΩΒot

<
Γ

>

0 6 �103 1.3�103
0.000

0.002

0.004

0.006

0.008

0.010

ΩΒot

Σ
Γ

�
<

Γ
>

0 6 �103 1.3�103
2068

2700

3200

ΩΒot

Ε x
HΜ

m
L

(b)

0 6 �103 1.3�103
0

1.5

3

�105

ΩΒot

<
Γ

>

0 6 �103 1.3�103
0.000

0.002

0.004

0.006

0.008

0.010

ΩΒot

Σ
Γ

�
<

Γ
>

0 6 �103 1.3�103
2068

2700

3200

ΩΒot

Ε x
HΜ

m
L

(c)

Figure 4: The electron beam dynamics. (a) the mean energy 〈γ〉, (b) the relative energy spread σγ/〈γ〉, and (c) the normalized
transverse emittance εx versus ωβot of the beam. The electron beam moves with initial energy 〈γo〉 = 200, initial emittance
εo = 2068µm. Initial bunch charge is 1.6 nC. The solid blue and red-dashed lines stand for the corresponding quantities with
and with out retarded effects respectively.

Electron bunches with the charge of few pC with bunch length of less than µm are being produced in the
laser wakefields [11,12]. The radiation effects of such bunches on the subsequent motion of the electrons
are studied in the laser pulses of different polarization and also in the laser wakefields. It is found that the
retarded effects metigate the self force effects for the electron counter propagating to the laser pulse. The
retarded effects are represented by red-dashed line in Figures 2, 3.
In the case of laser wakefield the retarded fields reduce the energy gain and increase the relative energy
spread and transverse emittance of the beam of relatively high initial radius and high total bunch charge,
(blue line in Figure 4, a, b, c). However, if the electron beam has low charge or small initial radius, the
retarded effects are negligible.

5. Summary

I The retarded effects metigate the self force effects for both kind of polarization.
I The retarded fields reduce the energy gain of the beam and increase the energy spread and transverse

emittance of the beam in a laser wakefield accelerator.
I The retarded effects depend linearly on the total charge and the length of the bunch.
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