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Problem statement

• Quantum efficiency parameter

χ = e~
m3c4

√√√√√√√√√√√√√√


ε ~E

c
+ ~p× ~H



2
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• Vacuum breakdown χ >> 1

• Cascades χ ∼ 1

• Quantum effects of radiation
reaction

~ω ∼ γmc2, a ∼
√√√√√√√√√√
2mc2

3~ω0
∼ 600

• Classical effects of radiation reaction
∆εrad = 2πIrad

ω0
≥ γmc2 a ∼ 300

Nonlinear Compton scattering laser-plasma interaction

• at I >> 1018W/cm2 field is locally constant
• Crossed field approximation for ultra-relativistic particles

(E2 −H2)/E2
S � χ2

e , ~E · ~H/E2
S � χ2

e

• Motion is quasi-classical in external classical field
• Dominating process is multi-photon Compton scattering

e± + n~ωl → e± + γ

• Quantum probability of emission calculated using Volkov
states.
dwγ
dεγ

= −αm
2c4
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e
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Simulation setup
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where
x = [χγ/χe(χe − χγ)]2/3

with 0 ≤ χγ < χe, Ai(x) is
the Airy function.

Transport equations for QED plasma [1], [2]

• Kinetic equation for relativistic plasma

∂

∂t
+ ~p

γm
· ∂
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+ ~F · ∂
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• Kinetic equation for hard photons (~ω ≥ mec
2)
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∂
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γ (~k, ~p) [f (~r, ~p, t)]

Hard photon emission in laser plasma dynamics [4]

Radiation reaction reduces a gain of energy by electrons.
Simulation parameters a = 100, np = 10ncr

Adaptive Simulation of Radiation Effects

Numerical issues

Pros:
• Allows to resolve dynamically emerging plasma effects
• Extends the range of wave modes supported by grid.
• Improves accuracy and safes computational power.
Cons:
• Spurious reflection of waves on non-uniformity (solved)
• Violation of conservation at grid interfaces (solved)
• Algorithmic complexity.
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Adaptation in momentum space

Discrete particles with
adaptive weights w
f =

∑
i wiS(~r − ~ri)δ(~p− ~pi)

Momentum conservation
∑

i ~uiwi =
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i ~uiwi

Energy conservation
∑
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Todo list:
• Optimization of splitting/clustering methods for
particles.

• Reduction of noise in charge and current deposition
methods.

• Criteria for grid adaptation for the Maxwell equations
with nonlinear source terms.

• Matching of adaptive algorithms in momentum and real space.

Simulation of QED cascades using adaptive particles

• Nonlinear Compton scattering
e− + n~ωl → e−

′ + γ

• Stimulated pair production:
γ + n~ωl → e+ + e−

dWcr(εe)
dεe

= αm2c4

~ε2
γ


∞∫
x

Ai (ξ) dξ +

2
x
− χγ

√
x

 Ai′(x)

,

Reflection free AMR-Maxwell: laser pulse and refractive disc

Conclusions

We report on our accomplishments in development of a novel numerical methodology for model-
ing of the high-frequency radiation reaction effects in ultra-relativistic plasma using the adaptive
mesh refinement technique. The research of the radiation reaction lies at the border between laser
plasma physics and quantum electrodynamics. The radiation reaction arises from the interaction
of electrons with their own electromagnetic field and unresolved high-frequency photons emitted

by other particles and becomes important at high electromagnetic intensity. There is still no
single simulation method which is applicable for both classical relativistic plasma processes and
quantum electrodynamical effects at such conditions. We suggest to plan to bring these scien-
tific disciplines together by employing the adaptive mesh refinement technique in kinetic plasma
simulation.
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