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We extend the existing PSC, a Particle-in-Cell code, which was developed to simulate a plasma under the The initial condition is a Gaussian profile: F(x,0) = Eyexp [—@2;720) } .
influence of very high external fields, by a Finite-Differences-Time-Domain (FDTD) solver for Maxwell’s The time evolution is shown in the following graph:
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equations of the general form
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where N(E(Z,t), H(Z,t)) is an arbitrary, non-linear function of the electric field £ and the magnetic field 2 —
H and their spatial and temporal derivatives. = —  T=25ps
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In standard FDTD-schemes, equations (1) are discretised using a staggered Yee-grid, where the field com- , o Lo
We see a steepening of the pulse and eventually (not shown) the wave will “break” similar to a shallow
ponents are defined at different points on the grid. Inspecting (1) shows that the non-linear part N has X
water wave.
to be evaluated at the grid points where the E-field ist defined. Depending on N, one can achieve this b
SHEP V ° y The relative error, which is defined as ||E — Epq ¢||/|[Epe r|| with [|E]| :== () E?)1/2 being the sum over
interpolation, but also staggered or unstaggered, colocated grids are possible [2|. orid
/ all E-values on the grid is shown for different values of At is shown in the following graph:
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Example: Kerr-nonlinear medium | - |
One popular example of a nonlinearity is given by the instantanous Kerr-Effect wich is described by a 5 - E 0 T —
polarisation S0 | 2 |
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where yv(3) is the nonlinear Kerr susceptibility and the corresponding polarisation current is given by 3] 050 100 150 0200 250 300 W00 2000 3000 400 500 60O
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The equations we want to solve therefore read: = | M
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OE(T 1) ~ — {Enﬂ 7 — EN(7 } The simulation time is always taken to be 50 picoseconds.
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here the index n d h | t logously for H j implicit nonli g h
where the 1n SX n denotes the actual timestep (analogously for H), we arrive at an implicit nonlinear Appllcatlon: QED
equation for E™TL which is solved up to machine precision. The coupled system is then subjected to a
| In quantum electrodynamics, the theory of electrons, positrons and photons, it is possible in the limit
standard leapirog algorithm.
J w/m < 1 (which means that the energy of the photons is much smaller than the rest mass of the electron)
4 . A to arrive at an effective theory only for photons, by “integrating out” the fermions. This was first done by
1D Reference solution | | | | ,
Euler and Heisenberg |5]. As a consequence, one obtains corrections to the classical Maxwell’s equations,
There are only very few analytical solutions known to coupled systems of nonlinear partial differential which can be perturbatively expanded in \/@E/Eu4 where a = 1/137 is the fine structure constant and
equations. Even fewer if one wants to consider more than one-dimensional systems. Therefore as a bench- Eoir ~ 1.3- 1018 Y is the Schwinger field. To lowest order, these read:
. — . , .
mark, we choose a reference solution for a Kerr-model in one dimension, given in |4|. The considered set
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The solution for (3) is given by -2 [V<E B)x E+(E-B)V X E} ] (5)
. The next generation of high power optical Laser facilities will not be able to reach the critical field strength.,
E(x,t)=F |z — 1 : (4) however such effects are predicted to be observable |6].
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where F'is an arbitrary, smooth function and the H-field is then given by a formal power series in F' Future work
which we do not need here. As a first aim, we want to simulate the following one-dimensional setup:
We take the simulation box to be 10 em and a resolution of 2000 points for a colocated, non-staggered Interference
orid. In |4] the authors show, that for a reasonable choice of parameters, the existence of a unique solution - '\ Pattern
to (4) is guaranteed for a simulation time of 50 ps. —> | | Strong Pulse
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