Coherent Synchrotron Emission in Ultraintense Laser Foil Interactions

Acknowledgements

Queens University Belfast:

· Brendan Dromey

- M. Yeung
- S. Cousens
- M. Zepf
- C. L. S Lewis

Ludwig Maximiliain University, Munich

• Sergey Rykovanov (now at LBL Berkeley)

Max Planck Institute for Quantum Optics

- D. Kiefer
- J. Schreiber

LANL, Trident

D. Jung

- · R. C. Shah
- · B. M. Hegelich

Coherent Synchrotron Radiation

Typical approach: Storage ring with bending magnets => incoherent Laser driven trajectories and nanobunches => coherent process possible

Relativistic plasma harmonics in transmission

Harmonic spectrum in transmission

Queen's University

nature

physics

To be published In Nature Physics

Coherent synchrotron emission from electron nanobunches formed in relativistic laserplasma interactions

B. Dromey¹*, S. Rykovanov², M. Yeung¹, R. Hörlein^{2,3}, D. Jung^{3,4}, D. C. Gautier⁴, T. Dzelzainis¹, D. Kiefer^{2,3}, S. Palaniyppan⁴, R. Shah⁴, J. Schreiber^{2,3}, H. Ruhl², J. C. Fernandez⁴, C. L. S. Lewis¹, M. Zepf^{1,5} and B. M. Hegelich^{3,4}

The relativistic plasma medium - bulk

Relativistic electron dynamics – PIC simulation

Overview of the mechanism - 1-D simulations

A few cycle super Gaussian pulse, normal incidence on a 200nm thick solid density (800Nc)

Note: CWE is not possible for normal incidence

Competing mechanisms –

Competing Mechanisms –

Relativistic Oscillating Mirror - ROM

Harmonics above the plasma
frequency emitted by Relativistic
Oscillating Mirror:
Plasma surface oscillates periodically
towards laser
Doppler-Upshift
max Frequency ~81/2γ 3ω0

 Upshifting is restricted to a short time Δτ~TO/ max.
 The upshifted pulse has a duration of O~ Δτ/ ~ TO/ From Fourier theory, the spectrum must extend to frequencies O~

Competing Mechanisms –

Relativistic Oscillating Mirror - ROM

keV ROM harmonics and the efficiency roll-over

B. Dromey et al., Phys. Rev. Lett. 99, 085001 (2007)

But ROM cannot produce upshifted light

in transmission

ω0

Doppler upshift cancels in transmission – ROM mechanism Cannot generate photons in the transmitted direction!

What causes Harmonics above ωp in transmission?

PIC simulations show different coherent processes.

From Quere et al. New Journal of Physics 2009

Coherent Synchrotron Emission

Pukhov, A., et al., Plasma Phys. Control. Fusion 52 124039 (2010)

ueen's University

An der Brugge, D., Pukhov, A., Phys. Plasmas 17, 033110 (2010)

For longer laser pulse lengths (typically 50fs – 500fs)

- require ultrahigh contrast pulses

The mechanisms of harmonic generation

	Scalelength (units of laser wavelength)	Intensity (Wcm-2)	Geometry	Spectrum Scaling	Origin
Coherent Wake emission	<<1	>1016	Oblique Incidence only	Depends on plasma gradient	Density waves driven by electron bunches
Relativistically Oscillating Mirror	0.1< <~1	>~1018	Normal and Oblique	In 1/n8/3 @a0>>1	Relativistic Doppler effect at surface
Coherent Synchrotron Emission	0.1< <~0.5	>> 1018	Only Oblique studied to date	ln 1/n4/3	Relativsitic electron nanobunches electrons performing trajectories

Queen's University Belfast

Normal incidence in transmission allows

CSE to be seen in isolation

In this geometry

٠

٠

ROM not possible – no reflection

CWE not possible – no oblique incidence

Do normal incidence in transmission interactions allow CSE?

Spectrum of emitted radiation

Scaling of harmonics in transmission (CSE)

Coherent control of CSE

Gemini laser – Central laser facility

ueen's University

Relativistic harmonics in transmission

Very clear asymmetry between odd and even orders

Coherent control of relativistic plasmas

<u>Laser Ellipticity – PIC code results</u>

Ungated 10 cycle pulse

Gated Pulse

- Identified a method to isolate CSE normal incidence in transmission
- Confirmed the mechanism for CSE in transmission
- Characteristic shallow scaling with harmonic order

- Use of elliptically polarised pulses to coherently control CSE
 - Gating of individual atto pulses.