FILMITh, September 19 - 21, 2012 MPQ, Garching, Germany

Upper-limit power for self-guided propagation of intense lasers in plasma

W.M. Wang Institute of Physics, CAS, Beijing, China

Collaborators

- Z.M. Sheng, M. Zeng, Y. Liu, J. Zhang, Shanghai Jiao Tong University, Shanghai, China
- L.M. Chen, Y.T. Li, Institute of Physics, CAS, Beijing, China
- S. Kawata, *Utsunomiya University, Japan*
- W. B. Mori,

University of California, Los Angeles, USA

• C.Y Zheng,

Institute of Applied Physics and Computational Mathematics, Beijing, China

Outline

- Motivation: why need self-guiding of intense lasers
- Lower-limit laser power for self-focusing
- Upper-limit power and lower-limit density for self-focusing
- Channel or anti-channel is better for self-guiding at high laser power?
- Summary

Self-guiding of intense lasers through a long distance is crucial for many applications

Remote sensing devices using lasers, *Lidar:* for Light detection and ranging.

Source: Teramobile

Lightning control using lasers Source: http://sparkingdawn.com

Self-guiding of intense lasers through a long distance is crucial for LWFA

IZEST: 100GeV electron generation from laser wakefield on PETAL PETAL: 3.5 kJ, 1053 nm, 0.5 ~10 ps

Self-focusing of lasers in plasma

Usually both relativistic effect (change of electron mass m_e) and transverse ponderomotive force (change of electron density n_e) may lead to laser self-focusing in plasma.

■ When P₀>P_c=17(n_c/n_e)GW, relativistic self-focusing can overcome defocusing, according theory in the weakly relativistic case.

Channels and lasers of ten Pc often adopted in LWFA

GeV beams from gas-filled capillary at LBNL-Oxford

Laser: 40TW 37fs (a=1.4) Capillary: 312 μ m diam. , 33mm length Plasma n_e: 4.3x10¹⁸ cm⁻³

W.P. Leemans et al., Nature Physics 2, 696 (2006);

D. J. Spence et al. Phys. Rev. E 63 015401(R) (2001)

Does the self-focusing criterion hold for PW lasers?

Current situation (<=100 TW or a few and ten P_c)

(a) $P_c = 17(n_0/n_c)$ (GW) is broadly adopted in LWFA designs (b) Ponderomotive force helps self-focusing (c) Plasma channels help laser guiding

Our results for PW lasers or tens or hundreds of P_c

- (a) $P_0 > P_c$ is not the enough criterion and there is an upper-limit power P_u , i.e., $P_c < P_0 < P_u$
- (b) Ponderomotive force helps defocusing when $P_0 > Pu$
- (c) Plasma channels are unfavorable for laser guiding when $P_0 > Pu$

Ponderomotive defocusing of PW lasers (far above P_c)

(2D PIC simulations)

z= 3 Rayleigh length z= 0.5 Rayleigh length 10.324 Vacuum Vacuum 12^{-1} 0 -12 Vacuum diffraction -24 = 0 0 20 25 30 25 30 0.8 24 -9TW=10P_=0.4P_ 9TW=10P_=0.4P_1 (mµ) 12 -0 Self-focusing at 9TW × -12 -24 = 25 30 30 20 25 10.324-1PW=1250Pc=50Pu 1PW=1250P_=50P_ 12-0 -12 **Defocusing at 1PW** -24 = 20 25 30 30 25z-ct (µm) z-ct (μm)

Defocusing is found even for PW lasers, even though selffocusing is found at 9TW.

Similar results are found in 3D PIC simulations

W-M Wang, Z-M Sheng et al., submitted

Both 2D and 3D PIC simulations indicate there is an **upper-limit power** in addition to the well- known **lower-limit critial power Pc=** $17(n_0/n_c)$ (GW) for self-focusing

Upper-limit power P_u for self-focusing or **power threshold for ponderomotive defocusing**

Self-guided propagation requires

$$\mathbf{F}_p(r=r_0) + \mathbf{F}_{es}(r=r_0) = 0$$

- **F**_p: transverse ponderomotive force **F**_{es}: transverse electrostatic force
- **r**₀: laser beam radius

Upper-limit power P_u for self-focusing or **power threshold for ponderomotive defocusing**

$$\mathbf{F}_p(r=r_0) + \mathbf{F}_{es}(r=r_0) = 0$$

$$\implies P_{u}^{3D} = \frac{n_{0}r_{0}^{4}}{n_{c}\lambda^{4}} \quad 3.1 \text{ TW} \qquad \qquad \textbf{3D geometry} \\ P_{u}^{2D} = 2P_{u}^{3D} \qquad \qquad \textbf{2D slab geometry} \end{cases}$$

Note that:

$$P_{c}^{3D} = 17(n_{c} / n_{0}) \text{ GW}$$

$$P_{c}^{2D} P_{c}^{3D} \sqrt{2}$$
3D geometry 2D slab geometry

 P_c : due to the relativistic effect P_u : due to the ponderomotive force

Lower-limit density n_L for self-focusing

For laser self-guiding, it is required that the laser power P satisfies: P_c<P₀<P_u

$$P_{c} < P_{u} = n_{0} > 0.074 n_{c} (2/r_{0}^{2})$$

A lower-limit density for self-guiding

$$n_L = rac{\lambda^2}{r_0^2} imes 0.074 n_c$$
 3D geometry
 $n_L = rac{\lambda^2}{r_0^2} imes 0.044 n_c$ 2D slab geometry

The relation of Pu and Pc in terms of n₀ and n_L

$$P_u = \prod_{n_L}^{n_0} P_c$$
 2D or 3D geometry

Verification of n_L and P_u by PIC simulations

 n₀≤n_L, self-focusing never occurs with any laser power; n₀=4n_L, self-focusing starts to appear with P₀=10P_c
 P₀=5P_u, ponderomotive defocusing starts to appear obviously; increasing P₀, the curve approach to the vacuum case
 2D results are similar (4n₁→5n₁, 5P_u→2P_u)

2D PIC simulations with larger beam radius r_0

> With $n_0 = 5n_L$ and $6n_L$, self-focusing starts to appear for $r_0 = 8$ and 16 um > With $P_0 = 2P_u$ and 10 P_u , defocusing starts to appear obviously > Our theory model agrees with simulation better with smaller r_0

Further examination with given I₀

$$P_c \leq P_0 \leq P_n \Rightarrow \frac{n_{L,19} = 0.077 n_c (\lambda^2 / r_0^2)}{n_{L,21} = 2.5 n_c (\lambda^2 / r_0^2)}, I_0 = 10^{19} \text{ Wcm}^{-2}$$

For a given laser intensity, a lower limit density is required for selfguiding.

 $I_0 = 10^{19} W cm^{-2}$

A plasma anti-channel may be preferred for selfguided propagation at high power over Pu

This agrees with our theory that there is a lower limit plasma density and higher density is favorable at high laser powers.

Summary

■ We demonstrate that transverse ponderomotive force may lead to defocusing at high laser powers, e.g., PW lasers.

Power threshold for ponderomotive defocusing or upperlimit power for self-focusing P_u is given as a function of n_e and r_0 . For self-guided propagation, the laser power P should satisfy $P_c < P_0 < P_u$

• A lower-limit density n_L for self-guiding is given.

With $P_0 > P_u$, a plasma channel is not favorable for laser selfguiding. Instead, an anti-channel may be preferred.

