Strong-Field QED Processes in Short Laser Pulses

Daniel Seipt, Tobias Nousch, Andreas Otto and Burkhard Kämpfer

FILMITh 2012

21.09.2012

Mitglied der Helmholtz-Gemeinschaft

Introduction

 Strong Field QED: Modification of the vacuum structure and scattering amplitudes by strong electromagnetic fields which are provided by a high-intensity laser

$$I_{\rm L}~>~10^{18}~{\rm W/cm^2}$$
 — relativistic optics

- Most of the high-intensity optical lasers (> 100 TW) are short pulse lasers e.g. DRACO (20 fs), ELI (15 fs), PFS (5 fs), PEnELOPE (30 fs),
- only a few optical cycles
- A proper description of the finite pulse length is necessary
- Field inhomogenieties include:
 - Finite temporal pulse duration
 - Finite frequency bandwidth
 - Temporal variation of the intensity
 - Light-front structure (the laser phase)

$$\phi \propto x^+ = t + z$$

Introduction: Processes

Non-linear one-photon Compton

Narozhny and Fofanov, JETP 83, 14 (1996) Boca and Florescu, PRA 80, 053403 (2009) Seipt and Kämpfer, PRA 83, 022101 (2011)

Non-linear Breit-Wheeler

Narozhny and Fofanov, LasPhys 7, 141 (1996) Heinzl, Ilderton, Marklund, PLB 692, 250 (2010) Nousch, Seipt, et al, PLB 715, 246 (2012)

Non-linear two-photon Compton

Seipt and Kämpfer, PRD 85, 101701 (2012) Mackenroth and Di Piazza, arXiv:1208.3424

Further processes: One-photon Annihilation, Trident Pair Production, ...

Strong-Field QED: Reiss-Nikishov-Ritus Method

- laser field is classical background field
- description of the laser pulse
- dimensionless laser amplitude

$$A_{\mu} = A g(\phi) \operatorname{Re} \left\{ \epsilon_{\mu}(\xi) e^{i(\phi + \phi_{CE})} \right\}$$

$$a_0 = \frac{eA}{m}$$

• Furry picture: non-perturbatively laser dressed electron states

$$(i\partial\!\!\!/ - eA\!\!\!/ - m)\Psi(x) = 0$$

Laser pulse is taken into account exactly on the tree level Details on the laser pulse are encoded in $E_p(x)$

Dirac-Volkov
propagator:
$$\mathcal{G}(y,x) = \int \frac{d^4p}{(2\pi)^4} E_p(y) G_0(p) \overline{E}_p(x)$$

Properties of the Volkov Matrix Functions

One-photon Compton Scattering in an Infinite Plane Wave

Collision of a weak IPW laser field with an electron: Inverse Compton/Thomson scattering \rightarrow X-ray production

The emitted frequency is the Doppler up-shifted laser frequency (low energy):

$$\omega' = \chi(\theta) \, \omega \qquad \stackrel{\theta=0}{\longrightarrow} \qquad \chi = 4 \gamma^2$$

High-energy electrons: recoil

$$\omega' = \chi(\theta, \frac{2\gamma\omega}{m}) \, \omega \quad \stackrel{\theta=0}{\longrightarrow} \quad \chi < 4\gamma^2$$

In a strong laser field: interactions with many photons

 $\omega'_n = n \, \chi(\theta, n \frac{2\gamma \omega}{m}, a_0) \, \omega \quad \underbrace{\text{low energy, } \theta = 0}_{\blacktriangleright} \quad \omega'_n = \frac{n}{1 + a_0^2/2} \, 4\gamma^2 \omega$

interaction with n photons \rightarrow harmonics modified boundary conditions: quasi-momentum \rightarrow intensity dependent red-shift

line spectrum in an IPW

Non-linear one-photon Compton Scattering

Narrow peaks of IPW turn into broad resonances with substructure The number N of sub-peaks is related to the asymptotic behaviour of $E_p(x)$!

Non-linear one-photon Compton scattering: IPW vs. PPW

- Compare total photon yield for infinite plane wave with pulsed plane wave
- Large laser intensity $a_0 \gg 1$
- PPW: SPA: Number of subpeaks $N \gg 1 \rightarrow$ average in phase space

- Low harmonics: Enhancement by an order of magnitude
- High harmonics: Reduction in a PPW
- Total photon yield: Enhancement of factor 2 as compared to const. crossed field

DS and B. Kämpfer, arXiv:1111.0188

Near threshold behaviour is drastically modified by short pulses

T. Nousch, DS, B. Kämpfer and A. I. Titov: PLB 715, 246 (2012)

Mitglied der Helmholtz-Gemeinschaft

Strong Enhancement of Pair Production Near Threshold

Mitglied der Helmholtz-Gemeinschaft

Two-Photon Compton Scattering

Mitglied der Helmholtz-Gemeinschaft

Propagator Pole Integration

single pole of the propagator due to the light-front structure

"time ordering" with respect to laser phase or light-front time

$$\Delta = 2\pi \delta(\phi' - \phi) k - 2\pi i \Theta(\phi' - \phi) e^{-i\ell_1(\phi' - \phi)} (P_1 + \ell_1 k + m)$$

instantaneous term

= light-front zero-mode propagator retarded term in light-front time, second vertex at later "time"

Numerical Results: Differential Spectra

Numerical Results: Differential Spectra

Inclusive two-photon spectra: Comparison with one-photon Compton

- result is insensitive to value of cutoff $\omega_{\min} = 1 \dots 1000 \, \mathrm{keV}$
- infrared divergent parts are the same as in perturbative QED
- cancellation of infrared divergence ensured by Bloch-Nordsieck theorem

Mitalied der Helmholtz-Gemeinschat

Seite 15

Two-Photon to One-Photon Ratio

Summary

- Effect of finite laser pulse duration on strong-field QED processes: one- and two-photon Compton and Breit-Wheeler
- Emergence of sub-peaks due to ponderomotive broadening and interference
- Substantially enhanced pair production cross section near the threshold
- Finite on-shell (real) and off-shell (virtual) contributions for two-photon Compton
- Enhanced two-photon emission in strong fields

T. Nousch, DS, B. Kämpfer and A. I. Titov, PLB 715, 246 (2012) DS and B. Kämpfer, PRD 85, 101701 (2012) DS and B. Kämpfer, PRA 83, 022101 (2011)

BACKUP

Mitglied der Helmholtz-Gemeinschaft Daniel Seipt | Institut of Radiation Physics | d.seipt@hzdr.de Non-Linear Compton Spectra: Quantum Effects

Quantum Calculation

- Effect of recoil
- Non-equidistant harmonics

- Maximum scattered frequency
- Spin relevant at high energy

Classical Calculation

- Self similar spectrum
- Equidistant harmonics

Both coincide at low energy

Previous Results in Infinite Monochromatic Plane Waves

• Result of [Lötstedt/Jentschura, Phys. Rev. Lett. 103, 110404 (2009)]:

$$S = i \sum_{n=1}^{\infty} \sum_{s=-\infty}^{\infty} \frac{(2\pi)^4 e^2 m \delta^4 (q_i - q_f + n\varkappa - k_b - k_c)}{2V^2 \sqrt{\omega_c \omega_b Q_i Q_f}} \times u_f^{\dagger} \gamma^0 \bigg[M_{bfc}^{n-s} \frac{\hat{f}_b + m}{p_b^2 - m_*^2} M_{ibb}^s + M_{cfb}^{n-s} \frac{\hat{f}_c + m}{p_c^2 - m_*^2} M_{icc}^s \bigg] u_i.$$
(1)

- Propagator can go on mass shell \rightarrow emission rate diverges
- Oleinik resonance infinities due to discrete level structure

$$p_{b,c}^2 = m_{\star}^2 \qquad p_{b,c} = q_i - k_{b,c} + sk$$

- Methods of regularization:
 - inclusion of electron decay width via imaginary mass expression
 - finite pulselength laser pulse \rightarrow acts as regulartor

Two-Photon Emission Probability

$$\frac{d^6W}{d\omega_1 d\Omega_1 d\omega_2 d\Omega_2} = \frac{\alpha^2 \omega_1 \omega_2}{64\pi^4 (k \cdot p)(k \cdot p')} |\mathcal{M}|^2 \qquad \text{differential probability}$$
$$\mathcal{M} = \frac{1}{2k \cdot P_1} \left\{ \sum_{n=0}^2 T_n A_n(s) - i \sum_{n,l=0}^2 U_{nl} B_{nl}(s, \ell_1) \right\} + (1 \leftrightarrow 2)$$

Complete result including off-shell and on-shell contributions Sokhotsky Weierstraß Theorem

constant Dirac currents: $T_n, U_{nl} \sim \bar{u}_{p'} \Gamma u_p$

Phase integrals over laser pulse:

$$A_n(s) = \int d\phi \, a^n(\phi) \exp\{is\phi - if(\phi)\}$$
 $a(\phi) = g(\phi) \cos(\phi)$
 $B_{nl}(s,\ell_1) = \int d\phi \, d\phi' \, \Theta(\phi'-\phi) a^n(\phi) a^l(\phi') \exp\{i(s-\ell_1)\phi'+i\ell_1\phi - iF(\phi',\phi)\}$

}

Two-Photon Emission Probability II

On-shell and off-shell contributions to emission probability ↓ finite resonant part ↔ Oleinik singularities

As shown by Ilderton, on-shell part is rendered finite due to causality prescription of the propagator [A. Ilderton, PRL **106**, 020404 (2010).]

Factorization of the on-shell part of the matrix element:

Realization of a Cutkosky cutting rule which is related to unitarity of the S matrix

Consequence in weak field limit:

on-shell part scales as a_0^2 , while off-shell part scales as a_0^1 at least two photons are needed to satisfy the on-shell momentum conservation

