

Laser-plasma accelerators for high-energy physics and light source applications

Carl B. Schroeder

Frontiers in Intense Laser-Matter Interaction Theory

Max Planck Institute of Quantum Optics, September 19-21, 2012

Work supported by Office of Science, US DOE, Contract DE-AC02-05CH11231

Outline: long-term and near-term applications of laser-plasma accelerators

Long-term application: Laser-plasma accelerator (LPA) based linear collider

- Iaser intensity requirements
- Imitations on LPA energy gain

 plasma density and laser wavelength scalings (determine laser requirements)

Minimizing linac length (i.e., construction costs) and total power requirements (i.e., operational costs)

Development of a single-stage 10 GeV laser-plasma accelerator at LBNL

Near-term application: LPA-driven free-electron laser (FEL)

 soft-x-ray FEL achievable with today's experimentally demonstrated LPA e-beams

Advanced accelerator concepts needed for future linear colliders

- post-LHC: consensus in physics community for a lepton (e+e-) collider (TeV-scale)
- Increasing energy-frontier requires advanced accelerator concepts

Laser-plasma accelerators (LPAs)

Laser-plasma accelerators: 1-100 GV/m accelerating field

$$E \sim \left(\frac{mc\omega_p}{e}\right) \frac{a^2/2}{(1+a^2/2)^{1/2}} \approx (96 \text{ V/m})\sqrt{n_0 [\text{cm}^{-3}]} \frac{a^2/2}{(1+a^2/2)^{1/2}}$$

plasma wave (wakefield): E ~100 GV/m (for n~ 10^{18} cm⁻³ and I~ 10^{18} W/cm²)

>10³ larger than conventional RF accelerators \Rightarrow ">km to <m"

Experimental demonstration: 1 GeV high-quality beam from LPA

Ultra-high laser intensities: ion cavity formation

condition for cavitation:

$$a^2 \left(1 + a^2/2\right)^{-1/2} > (k_p r_L)^2/4$$

- Bubble regime:
 - High intensity (a²>>1) Pukhov & Meyer-ter-Vehn, APB (2002)
 - Highly asymmetric and nonlinear
 - Increasing intensity increases asymmetry
 - ion cavity:
 - Focuses electrons
 - Defocuses positrons
 - positron acceleration on density spike
 - Nonlinear focusing forces
 - Non-uniform accelerating forces
 - Self-trapping present (staging difficult)
 - strong laser evolution
 - reduced phase velocity (uncontrolled trapping)

Modeled using INF&RNO

 $k_pL=1$

Quasi-linear intensity regime: allows for e⁺ acceleration

$$E \sim \left(\frac{mc\omega_p}{e}\right) \frac{a^2/2}{(1+a^2/2)^{1/2}}$$

- a=1k/k_p=20 k_pL=1 k_pR=5
- Quasi-linear/weakly-relativistic regime
 - a ~ 1, I~10¹⁸ W/cm²
 - Nearly-symmetric regions for electron/position acceleration/focusing
 - Dark-current free (no self-trapping)
 - Stable propagation in plasma channel
 - Allows shaping of transverse fields
 - Phase velocity ~ laser group velocity

Matched, ultra-low-emittance beams required

Collider application requires small beam size at IP for sufficient luminosity:

$$\mathcal{L} = \frac{fN^2}{4\pi\sigma_x^*\sigma_y^*} = \frac{P_bN}{4\pi U_b\sigma_x^*\sigma_y^*}$$

 Focusability of beam (at final focus to IP) limited by synchrotron radiation (Oide Limit) - small emittances required:

$$\sigma_{\min}^* = (\gamma \epsilon_n)^{5/7} r_e^{2/7} F$$

Un-matched beam leads to emittance growth.

Matching condition:

$$k_{\beta}\sigma_x^2 = \epsilon_n/\gamma$$

 Strong-focusing can lead to small matched beam radius (stringent alignment tolerances):

• In bubble regime $a^2/\gamma_{\perp} \gg (k_p r_s)^2/4$, focusing force is determined by plasma density and *independent* of laser intensity

$$F_{\perp} = -eE_0k_pr/2 \propto n$$

Control of focusing forces by tailoring transverse laser intensity distribution

• In weakly-relativistic regime $a^2/\gamma_{\perp} < (k_p r_s)^2/4$, focusing force is determined by the *local* gradient of the laser intensity

$$F_{\perp} \sim -eE_0 k_p \nabla_{\perp} a^2$$

 All Gauss-Laguerre modes guided in parabolic plasma channel

$$n(r) = n_0 \left(1 + r^2 / R_{ch}^2\right)$$

 Controlling the transverse laser intensity profile, controls the focusing force (independent of the accelerating force)

Limits to single-stage energy gain: Laser energy depletion necessitates staging

Limits to single stage energy gain:

$$mc^2 \Delta \gamma \sim q(mc\omega_p/e)L_{\rm int}$$

- Laser Diffraction
 - Limits laser-plasma interaction length to ~ Rayleigh range (typically most severe)
 - Controlled via transverse plasma density tailoring (plasma channel) and/or relativistic self-guiding and ponderomotive self-channeling

Beam-Wave Dephasing:

- Slippage between e-beam and plasma wave (v_{phase} < v_{beam} < c)</p>
- Determined by plasma wave phase velocity (*approximately* laser group velocity)

$$L_{
m dephase} \propto \lambda_p / \gamma_{
m phase}^2 \propto n^{-3/2} \lambda^{-2}$$

- Laser Energy Depletion:
 - Rate of laser energy deposition of into plasma wave excitation

$$L_{
m deplete} \propto n^{-3/2} \lambda^{-2}$$
 11

Laser diffraction controlled by tailored plasma channel

Laser diffraction: $(L \sim Z_R)$

Solution: tailor plasma profile to form plasma channel

Geddes et al., Phys. Rev. Lett. (2005)

Capillary discharge plasma waveguides:

- Plasma fully ionized for t > 50 ns
- After t ~ 80 ns plasma is in quasi-equilibrium.
 Ohmic heating is balanced by conduction of heat to wall
- Ablation rate small: cap. lasts for >10⁶ shots
- n_e ~ 10¹⁷ 10¹⁹ cm⁻³

Hooker et al., JOSA (2000)

Laser evolution determines phase velocity (beam dephasing)

- Laser pulse-steepening increases wavelength
- Laser red-shifting decreases laser velocity
- Nonlinear (a~1) plasma wave phase velocity is a function of laser intensity and not equal to the laser velocity:

$$\gamma_{\text{phase}}(a_0) < \omega_0/\omega_p < \gamma_{\text{group}}(a_0)$$

 Phase velocity evolves as laser propagates – decreases owing to laser red-shifting and steepening

$$\partial_t \gamma_{\text{phase}} < 0$$

Lower wake phase velocity:

- reduces the trapping threshold
- reduces energy gain and efficiency

Schroeder et al., PRL (2011)

Energy gain limited by beam-laser dephasing

- Significant laser energy remaining at dephasing length in quasi-linear regime
- Energy gain limited by dephasing (in linear and nonlinear regime)
- Plasma tapering required for improved efficiency in nonlinear regime

Slippage controlled via plasma density taper

 To lock phase of accelerating field, plasma density must increase (plasma wavelength decrease) as beam slips with respect to driver:

- Channel radius tailored: $R_{\rm ch}(z) = k_{p0}(z)r_0^2/2$
- Phase lock both focusing and accelerating forces

Single-stage plasma density scalings verified with PIC simulations

 Single-stage PIC simulations (using WARP with boosted-frame technique) verifying plasma density scaling

LPA single-stage plasma density scalings

Choice of plasma density and staging determines main linac length

Number of stages:

Wednesday, 19 September 2012

Laser in-coupling using plasma mirrors allows compact staging

- Conventional optics approach: stage length determined by damage on conventional final focus laser optics Laser Laser Laser $Z_R (I/F\omega_P)^{1/2} \sim 10^2 Z_R$
- Plasma mirror in-coupling:
 "Renewable" mirror for high laser intensity
 Relies on critical density plasma production
 Laser contrast crucial (>10¹⁰)
 - Advantage of laser-driven plasma waves: short in-coupling distance for plasma wave driver [high average (geometric) gradient]
 - Development of staging technology critical to collider application

LPA stage laser energy requirements

• Laser intensity for large accelerating field in quasi-linear regime: $E \sim (96 \text{ V/m})\sqrt{n_0[\text{cm}^{-3}]} \frac{a^2/2}{(1+a^2/2)^{1/2}} \implies a \sim 1 \implies I > 10^{18} \text{ W/cm}^2$ for 1 um wavelength $a \simeq 8.6 \times 10^{-10} \lambda [\mu\text{m}] \sqrt{I[\mu\text{m}]}$

 $\begin{bmatrix} 3 < k_p r_L < 6 \\ r_L \sim \lambda_p \propto n^{-1/2} \end{bmatrix}$

- 1. avoid bubble formation
- 2. avoid strong self-focusing
- Laser pulse length ~ plasma wavelength

$$L_L \sim \lambda_p / 2\pi \propto n^{-1/2}$$

р

• Laser energy:

$$U_{\text{laser}} \propto a^2 \lambda_p^3 / \lambda^2 \propto n^{-3/2}$$

lasma density =
$$n_0 \sim 10^{17}$$
 cm⁻³ \implies U_{laser} ~ 10 's J
 $n_0 \sim 10^{15}$ cm⁻³ \implies U_{laser} ~ 10 's kJ 20

Collider plasma density scalings: Laser energy and power

For fixed luminosity (e.g., $2x10^{34}$ s⁻¹ cm⁻² for E_{cm} = 1 TeV) and IP size:

Repetition rate: $f_{rep} \propto n$ **Beam power:** $P_{beam} = fN\gamma mc^2 \propto n^{1/2}$

Collider plasma density scalings: total power requirements

• For fixed luminosity (e.g., $2x10^{34}$ s⁻¹ cm⁻² for E_{cm} = 1 TeV) and IP size:

Particles/bunch (limited by bream loading):

$$N \propto \frac{U_L}{\Delta \gamma} \propto n^{-1/2}$$

Luminosity:

$$\mathcal{L} = \frac{fN^2}{4\pi\sigma_x^*\sigma_y^*} = \frac{P_bN}{4\pi U_b\sigma_x^*\sigma_y^*}$$

Wednesday, 19 September 2012

22

Schroeder et al., PR ST-AB (2010)

Beamstrahlung at IP produces background photons and loss of beam energy

- Beamstrahlung: scattering of beam in field of colliding beam
- Future colliders will be in the quantum beamstrahlung regime: the mean field strength in beam rest frame larger than the Schwinger critical field Y>1

$$\mathcal{L} \propto U_{\rm cm}^2 \longrightarrow \Upsilon \propto U_{\rm cm}^{5/2}$$

• Average number of beamstrahlung photons emitted per electron during collision (using Sokolov-Ternov power spectrum, P. Chen et al.):

$$n_{\gamma} \approx 2.54 \left(\frac{\alpha^2 \sigma_z}{r_e \gamma}\right) \frac{\Upsilon}{(1+\Upsilon^{2/3})^{1/2}} \propto \sigma_z \Upsilon^{2/3} \propto N^{2/3} \sigma_z^{1/3} \propto n^{-1/2}$$

• Average fractional energy loss (P. Chen et al.):

$$\frac{\delta\gamma}{\gamma} \approx 1.24 \left(\frac{\alpha^2 \sigma_z}{r_e \gamma}\right) \frac{\Upsilon^2}{[1 + (3\Upsilon/2)^{2/3}]^2} \approx 0.286 \ n_\gamma$$

Beamstrahlung-limited regime: modifies LPA collider scalings at low density

beamstrahlung-limited regime

Constraint of fixed beamstrahlung: fixed n_{γ} (photons per electron):

$$N \le N_{\text{beam}} = \frac{0.6 \ n_{\gamma}^{3/2}}{\alpha^2 r_e^{1/2}} \frac{\gamma^{1/2} \sigma_*}{\sigma_z^{1/2}} \propto n^{1/4}$$

Schroeder et al., PR ST-AB (2012)

beam-loading limited regime

24

Collider wall-plug power:

accelerating field:

 $E_z \propto a^2 n^{1/2}$ linac length: $L_{\rm linac} \propto a^{-2} n^{-1/2}$ laser energy/stage:

$$U_{\text{laser}} \propto a^2 n^{-3/2}$$

Luminosity per (COM)²

$$\frac{\mathcal{L}}{U_{\rm cm}^2} \propto \frac{n_{\gamma}^{3/2} \eta P_{\rm wall}}{\sigma_* \gamma^{5/2} \sigma_z^{1/2}}$$

 $\propto n^{-1/2}$ $\propto n^{1/2}$ 600 500 $n_{\gamma}=2$ n_=3 $n_v = 1$ 400 P_{wall} (MW) 300 E_{cm} = 1 TeV $L = 2x10^{34} \text{ s}^{-2} \text{ cm}^{-2}$ n = 6% 200 $\sigma^2 = 100 \text{ nm}^2$ 100 reduced gradient and/or multi-bunch operation 1015 1016 1017 1018 n (cm⁻³)

Conceptual laser-plasma accelerator linear collider

Laser technology development required:

- High luminosity requires high rep-rate lasers (10's kHz)
- Requires development of high average power lasers (100's kW)
- High laser efficiency (~tens of %)

BELLA: BErkeley Lab Laser Accelerator

BELLA Project: >40 J in <40 fs at 1 Hz laser and supporting infrastructure at LBNL

 1 PW laser facility
 10 GeV electron beam from a meter long plasma accelerator
 BELLA Project budget: Funded by Office of Science – High Energy Physics
 Schedule: laser commissioned mid-2012 first LPA expts.: October 2012

BELLA Facility: state-of-the-art PWlaser for laser accelerator science

LPA electron beam parameters presently achievable

- Energy: ~ 100 MeV 1 GeV
 - Obtained with 10-100 TW laser pulses in mm cm long plasmas
- Charge: ~ 1- 100 pC
 - Depends on tuning, energy spread due to beam loading
- Energy spread: ~ 1 10% level
 - Depends on amount of charge, trapping physics
- Normalized Emittance: ~ 0.1 micron
 - Based on divergence measurements (~ 1 mrad) and e-beam spot (~0.1 micron)
 - Improved measurements needed
- Bunch duration: ~1 10 fs
 - Based on optical probe (*Buck et al., Nature Physics (2011)*), CTR (*Lundh et al., Nature Physics (2011)*), and THz measurements
- Rep. rate (laser system): 1 10 Hz
 - limited by availability of high average power lasers
- Foot-print (laser system): ~ (few meter) x (few meter), 10 Hz, 100 TW-peak laser system (30 W-average)

Can today's demonstrated LPA e-beam by used to drive a free-electron laser? 28

Low transverse emittance estimated from betatron radiation measurement

LPA 6D beam brightness comparable to conventional sources

but...

- Energy spread order of magnitude too large (for soft-x-ray FEL; ρ~5x10⁻³)
- Bunch duration < slippage length (for soft x-ray FEL)

solutions:

- Emittance exchange
- Phase-space redistribution/manipulation:
 - collimation
 - decompression
 - introduce transverse position-energy correlation (use transverse gradient undulator)

Narrow beam energy spread required for FEL resonance

For efficient FEL interaction, the resonant wavelength spread caused by the energy spread over a gain length << 1</p>

$$\frac{\Delta\gamma}{\gamma} = \frac{\Delta\lambda}{2\lambda} \ll \frac{\lambda_u}{2L_g} \approx 4\pi\rho$$

→ $\sigma_{\delta} < \rho \sim 10^{-3}$ for short-wavelength FELs

This is a local energy spread requirement not projected (for LPA, bunch length < slippage, local ~ projected)</p>

FEL radiation gain length

THUNDER undulator at LBNL

THUNDER (*Tapered Hybrid Undulator*) on-loan to LBNL from Boeing Corp.

planar

1.02 T

4.8 mm

K=1.85

3.6 m

220

2.18 cm

K. Robinson et al., IEEE QE (1987)

esonant wavelength (nm)	100 50 20 10 5		λ_L	$=\frac{\lambda}{2}$	$\frac{u}{\gamma^2} \left(1 + \frac{u}{\gamma^2}\right)$	$\left(\frac{K^2}{2}\right)$	$L_u = 2.18$ S = 1.85	cm
Å.	2 0.25	0.5 0	.75 Beam	1 ener	1.25 gy (Ge ^v	1.5 √)	1.75	2

ten (22 period, 50 cm) undulator sections = 5 m

Undulator type

Peak Field

Magnetic gap

Undulator period

Number of periods

Undulator parameter,

Canted-pole focusing, beta-function (0.5 GeV)

Coupling LPA electron beam to undulator at LBNL

Diagnostic of electron beam (emittance and energy spread)

XUV FEL at LBNL

Slippage dominant effect for fs LPA beams

bunch length < slippage

$$L_b < N_u \lambda \sim \frac{\lambda}{\rho}$$

single-spike operation:

$$L_b \sim L_c = \frac{\lambda}{4\pi\rho}$$

LPA beam decompression for FEL lasing

>2 orders of magnitude enhancement using LPA beam decompression

Decompression by factor ~10 \rightarrow >2 orders of magnitude enhancement

Wednesday, 19 September 2012

38

Transverse gradient undulaor (TGU) to compensate for large energy spread

off-energy particle in TGU

Resonance condition:

$$\lambda = \frac{\lambda_u}{2\gamma^2(x)} \left[1 + K(x)^2/2 \right]$$

 \succ Sort e-beam with dispersion: $x=\eta\Delta\gamma/\gamma$

dulator poles
$$\Delta K$$

Canting the undulator poles, generate a linear field gradient:

 $\frac{\Delta K}{K} = \alpha x$

$$\eta = \frac{2 + K^2}{\alpha K^2}$$

Transverse gradient undulator (TGU):

T. Smith et al, J. Appl. Phys. (1979)

39

Transverse gradient undulaor (TGU) to compensate for large energy spread

Gain length in TGU

(dispersion reduces beam density):

$$L_g \approx \frac{\lambda_u}{4\pi\sqrt{3}\rho} \left[1 + \left(\frac{\eta\sigma_\gamma}{\sigma_x\gamma}\right)^2 \right]^{1/6}$$

Advantages of TGU:

- shorter radiation pulse durations
- higher peak FEL power
- smaller FEL bandwidth
- seeding possible

 Depending on beam parameters (bunch length, FEL wavelength, ...), may want to combine TGU with decompression Х

y

S

Ν

 $\gamma + \Delta \gamma$

THUNDER: canted pole undulator

Halbach formula for Hybrid undulator:

$$\alpha = 2\phi \frac{1}{K_0} \frac{\partial K_0}{\partial y} = 2\phi \left(\frac{5.47}{\lambda_u} - 3.6 \frac{g}{\lambda_u^2} \right)$$

41

e.g.,
$$2\phi = 0.2 \text{ rad}$$
, $\lambda_{\mu} = 2.18 \text{ cm}$, g = 4.8 mm $\rightarrow \alpha = 43 \text{ m}^{-1}$

FEL Enhancement using flat beam in TGU

500 MeV beam with 2% energy spread (rms) 5kA, 0.1 um emittance, 10 fs 5-m (THUNDER) undulator, λ_u = 2.18 cm, K = 1.85

Radiation wavelength $\lambda_r = 31 \text{ nm}$

For TGU, dispersion $\eta = 3.7$ cm, trans. e-beam size: 790um x 20um

Soft x-ray LPA-driven FEL at 3.9 nm

Wednesday, 19 September 2012

Summary

- Laser-plasma accelerators considered for future linear collider:
 - ▶ Operation in quasi-linear regime (a~1): e+ acceleration, control of focusing forces
 - Laser depletion and beam dephasing; staging with tapered plasma channels
 - ► High luminosity required → ultra-low beam emittance; Beamstrahlung at IP limits charge/bunch
- Plasma density scalings determine required laser technology
 - Minimizing construction and operating costs \rightarrow operating at $10^{16} < n[\text{cm}^{-3}] < 10^{18}$

~10 GeV stages (operating at n=10¹⁷ cm⁻³): requires laser pulse (at 1 micron),
 ~30 J, a~1, ~100 fs, ~15 kHz, ~30% efficiency

- BELLA → PW (>40 J, <40 fs) laser for demonstration of 10 GeV LPA
- LPA-driven Free-electron laser is a promising near-term application of LPA

LPA 6D brightness comparable to conventional sources; FEL application hindered by relative energy spread and slippage.

- soft x-ray FEL realizable using demonstrated LPA e-beam parameters:
 - Beam decompression

Beam dispersion coupled with transverse gradient undulator

Acknowledgements

LBNL: C. Benedetti S.S. Bulanov E. Esarey W. Fawley C. Geddes W. Leemans K. Robinson Cs. Toth J. van Tilborg J.-L. Vay

UHH/DESY:

F. Gruener

A. Maier

SLAC: Y. Ding Z. Huang