

Institute for Theoretical Physics I University of Dusseldorf, Germany

High Harmonic Generation from Overdense Plasmas

FILMITh, Garching 2012

Outline

- Relativistic harmonics and attosecond pulses from overdense plasmas, spectrum $n^{-8/3}$
- Highly efficient regime of electron nanobunching, spectrum *n*^{-6/5}
- Spectral modulations and the femtosecond plasma surface dynamics
- 2D dynamics and surface wave excitation

Relativistic High Harmonics from solid state target surfaces

Relativistic Harmonics

Oblique incidence in 1D geometry

Analytic description of HHG

Electric field

$$\mathbf{E}_{\perp}(t,x) = \frac{2\pi}{c} \int_{x}^{+\infty} \left[\mathbf{j}_{\perp} \left(t + \frac{x - x'}{c}, x' \right) - \mathbf{j}_{\perp} \left(t - \frac{x - x'}{c}, x' \right) \right] dx'$$

Reflected Incoming
wave wave wave

So that at the left of plasma

$$\mathbf{E}_{\perp}(t, x) = \mathbf{E}_{i}(t - \frac{x}{c}) + \mathbf{E}_{r}(t + \frac{x}{c})$$

The ROM boundary condition

Baeva, Gordienko, Pukhov, Phys. Rev. E74, 046404 (2006)

 Skin layer evolution time long compared to skin length (e.g. step-like profile), then follows ARP boundary condition

$$E_i(x_{ARP}(t)-ct)+E_r(x_{ARP}(t)+ct)=0$$

- Reflected field phase modulation of incident field
 - same maxima and minima
 - same sequence of monotonic intervals

Normal incidence, $N_e = 250 N_c$, sharp edged profile, $a_0 = 60$

Analytical derivation of the BGP spectrum

Fourier transform of the reflected wave

$$E_r|\omega| = -\int E_i \left(t - \frac{x_{ARP}}{c}\right) e^{i\omega|t + x/c|} \left(1 + \frac{\dot{x}_{ARP}}{c}\right) dt$$

We assume for the incident wave

$$E_i|t| = a(t)|e^{i\omega_0 t} + e^{-i\omega_0 t}|/2$$

The reflected wave is thus

$$E_r|\omega| = E_+ + E_-$$

$$E_{\pm}|\omega| = -\int d\left(t - \frac{x_{ARP}}{c}\right) e^{i\left[\omega\left(t + \frac{x_{ARP}}{c}\right) \pm \omega_0\left(t - \frac{x_{ARP}}{c}\right)\right]} \left(1 + \frac{\dot{x}_{ARP}}{c}\right) dt$$

Stationary points and the γ-spikes

The stationary phase points correspond to the instants when the apparent reflection point (ARP) moves towards the observer with maximum velocity. The corresponding ARP gamma factor $\gamma_{ARP} = \left|1 - \dot{x}_{ARP}^2\right|^{-1/2}$

General form of the spectrum

The spectrum can be calculated for an arbitrary order *n* of the surface velocity maximum

$$I_{n}(\omega) \propto \omega^{-\frac{4n+4}{2n+1}} \left[\operatorname{Gai}_{n} \left(\frac{\omega \gamma^{-2} - 4\omega_{0}}{2|\alpha \omega|^{1/(2n+1)}} \right) - \operatorname{Gai}_{n} \left(\frac{\omega \gamma^{-2} + 4\omega_{0}}{2|\alpha \omega|^{1/(2n+1)}} \right) \right]^{2}$$

Where Gai_n is the generalized Airy function:

$$\operatorname{Gai}_{n}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp\left[i\left|xt + t^{2n+1}/(2n+1)\right|\right] dt$$

IVERSITÄT DÜSSELDOR

General form of the spectrum

The BGP Spectrum

Baeva, Gordienko, Pukhov, Phys. Rev. E74, 046404 (2006)

HEINRICH HEINE UNIVERSITÄT DÜSSELDORF

(Sub-)Attosecond Pulses

Baeva, Gordienko, Pukhov, Phys. Rev. E74, 046404 (2006)

After proper filtering of RHHG one obtains
<u>a train of (sub-)attosecond pulses</u>

How universal is the -8/3 spectrum?

Violation of the boundary condition. Much flatter spectrum, isolated pulse

Simulation parameters: plasma density ramp $\propto \exp(x/(0.33\lambda))$ up to a maximum density of $N_e = 95N_c$ (lab frame), oblique incidence at 63° angle (p-polarised). Laser field amplitude is $a_0 = 60$.

• Violation of ARP boundary condition \implies no ROM

 $\bullet\,$ No spectral cut-off at plasma frequency \Longrightarrow no CWE

Nanobunching in electron density

Coherent synchrotron emission from the density peak

1D Coherent Synchrotron

• 1D current distribution generates *E*-field:

$$E_{sy}(t,x) = 2\pi \int_{-\infty}^{+\infty} j\left(t + \frac{x - x'}{c}, x'\right) dx'$$

• Assume infinitely thin current layer $j(t,x) = j(t)\delta(x - x_{el}(t))$ and Fourier-transform to obtain spectrum:

$$\tilde{E}_{sy}(\omega) = 2\pi \int_{-\infty}^{+\infty} j(t) e^{-i\omega(t+x_{el}(t)/c)} |dt|$$

• Asymptotic behaviour ($\omega \gg 1$) of spectrum depends on stationary phase point t = 0:

$$\dot{x}_{el}(0) \approx -c$$

Simulation parameters: $a_0 = 60$, plasma density ramp $\propto \exp(x/(0.33 \lambda))$, maximum density $N_e = 95 N_c$, p-polarised incidence at 63°

- 2nd order zero in v_y
- Bunch width: $\delta_{FWHM} \approx 0.0015 \lambda$, roughly Gaussian profile

Excellent Agreement between Theory and Simulation

• Theoretical Spectrum: $I(\omega) \propto \omega^{-6/5} \times \left[s'' \left(\left(\frac{\omega}{\omega_{rs}} \right)^{4/5} \right) \right]^2 \times \exp \left(- \left(\frac{\omega}{|\omega_{rf}|} \right)^2 \right)$ using $\omega_{rs} = 800$ $\omega_{rf} = 225$ compatible with PIC data

Two relativistic regimes of HHG

1. BGP case:

plasma boundary stays "conjunct" the skin layer emits as a whole \rightarrow the universal **n**^{-8/3} spectrum

 Nanobunching of plasma electrons, Coherent Synchrotron Emission (CSE)
→ much flatter spectra, n^{-4/3} or n^{-6/5}

BGP vs CSE case

Pictures: electron density and contour lines (cyan) of the emitted harmonics radiation ($\omega > 4.5\omega_0$). Simulation parameters: $a_0 = 60$ in both cases, (a) normal incidence, $N_e = 250 N_c$, sharp edged profile; (b) plasma density ramp $\propto \exp(x/(0.33\lambda))$, maximum density $N_e = 95 N_c$, p-polarised incidence at 63°

Boundary condition violation

pukhov@tp1.uni-duesseldorf.de

Boundary condition violation parameter study, normal incidence

Boundary condition violation parameter study, oblique incidence

Boundary condition violation influence on spectra oblique incidence

Hardly any influence on the spectra. BGP spectra energetically dominate over nanobunching

Forward harmonic emission

HHG experiment on D'Arcturus

M. Behmke et al., Phys. Rev. Lett., 106, 185002 (2011)

The harmonic spectrum contains information on the femtosecond dynamics of relativistic plasma

Spectral modulations and surface dynamics

M. Behmke et al., Phys. Rev. Lett., 106, 185002 (2011)

Violation of ROM boundary condition in the D'Arcturus experiment

M. Behmke et al., Phys. Rev. Lett., 106, 185002 (2011)

2D surface dynamics

D. an der Bruegge et al., Phys. Rev. Lett., 108, 125002 (2012)

Summary

- The HHG spectrum is a power. The exponent is p=8/3 for BGP spectrum p=6/5 for CSE spectrum
- Spectral modulations encode the femtosecond plasma surface dynamics
- 2D surface dynamics may lead to sideband emissions at selected angles