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Why RPA using Circular Polarization?
Using CP and normal incidence (an experimentalist's 
nightmare...) fast electron generation by the jXB force is 
strongly suppressed, maximizing radiation pressure and 
obtaining a “smooth” acceleration of the bulk target

Early study in “thick” targets: 
A.Macchi et al, PRL 94 (2005) 165003

Use of CP-RPA with ultrathin foils has been later proposed to 
achieve effcient and monoenergetic acceleration: 
X.Zhang et al, Phys. Plasmas 14 (2007) 073101 & 123108; 
A.P.L.Robinson et al, New J. Phys. 10 (2008) 013201;
O.Klimo et al, Phys. Rev. ST-AB 11 (2008) 031301.

First experimental evidence
reported recently:
A.Henig et al, PRL 103 (2009) 245003



  

CP-RPA appears to attract much theoretical interest...

Thick (semi-infinite) targets (“Hole Boring”):
T.V.Liseikina & A.Macchi, Appl.Phys.Lett. 94 (2007) 165003;
N.Naumova et al, Phys.Rev.Lett. 102 (2009) 025002;
T.Schlegel et al, Phys.Plasmas 16 (2009) 083103;
A.P.L.Robinson et al, Plasma Phys.Contr.Fus. 51 (2009) 024004 & 095006;
A.Macchi & C.Benedetti, Nucl.Inst.Meth.Phys.Res. A (2010), in press

Ultrathin (sub-wavelength) targets (“Light sail”):
X.Q.Yan et al, Phys.Rev.Lett. 100, (2008) 135003 ;
B.Qiao et al, Phys.Rev.Lett. 102 (2009) 145002;
V.K.Tripathi et al, Plasma Phys.Contr.Fus. 51 (2009) 024014;
B. Eliasson et al. New J. Phys. 11 (2009) 073006;
X.Q.Yan et al, Phys.Rev.Lett. 103 (2009) 135001;
A.Macchi et al, Phys.Rev.Lett. 103 (2009) 085003;
A.Macchi et al, New J. Phys. (2010) in press.

Variations on the theme (side effects, structured targets, ...)
T.V.Liseikina et al, Plasma Phys.Contr.Fus. 50 (2008) 124033;
S.G.Rykovanov et al., New J. Phys. 10, (2008) 113005;
L.Ji et al, Phys.Rev.Lett. 101 (2008) 164802;
Y.Yin et al, Phys.Plasmas 15 (2008) 093106; 
A.R.Holkundkara and N.K.Gupta, Phys.Plasmas 15 (2008) 123104;
M.Chen et al, Phys.Plasmas 15 (2008) 113103;
X.Zhang et al, PRST-AB 12 (2009) 021301;
A.A.Gonoskov et al, Phys.Rev.Lett. 102 (2009) 145002;
M.Chen et al, Phys.Rev.Lett. 103 (2009) 024801

Results 
presented 

in this 
poster



  

RPA dynamics and thick vs. thin targets - I

The laser pulse penetrates into the target creating electron 
depletion (0<x<d ) and compression (d<x<d+l

s
 ) layers.

The electrostatic 
field E

x
 balances

the ponderomotive 
force (=local 
radiation pressure) 

compression

depletion



  

RPA dynamics and thick vs. thin targets - II

Ions in compression layer 
d<x<d+l

s 
are accelerated “by 

RPA” (actually by the electric 
field balancing the radiation 

pressure on electrons)

Ions in the depletion layer
 0<x<d

are accelerated by their
own space-charge field

(Coulomb explosion)
and do not reach “RPA”

ions



  

RPA dynamics and thick vs. thin targets - III

The faster ions originate from the layer  
d<x<d+l

s
   (l

s
≈c/2

p
)

The ions pile up at x≈d+l
s
 and there 

“wavebreaking” and bunch
formation occurs.

A “thin” target should
end here, 

i.e have a thickness
ℓ≈d+l

s 
in order to 

allow “repeated”
acceleration of the

“fast” ion layer



  

Scaling laws in the hole boring regime

“Piston parameter”

Cut-off velocity and energy
for non-relativistic ions
[A.Macchi et al, 
 PRL 94 (2005) 165003]

Relativistic corrections 
accounting for laser energy 
depletion in the Lab frame
[A.P.L.Robinson et al, 
 PPCF 51 (2009) 024004]



  

Hole Boring: Pro et Contra

- Ion energy scales with pulse intensity, not energy

- For solid-densities only a few MeV energies may be  
 obtained (maybe not sufficient to cross the target!)

- with respect to LS (requiring ultrathin targets) 
  HB seems less prone to prepulse effects: 
  it works in low density “preplasma” achieving
  higher ion energy [Liseikina et al, PPCF 50 (2008) 124033]

- with moderately overdense gas or liquid jet higher 
energies and high repetition rate may be obtained 

  Option: liquid hydrogen jet with Ti:Sa laser
     n

e
 =4.2 X 1022  cm-3  =25n

c
 , 25m  diameter

    [Toleikis et al, High Energy Density Physics 6 (2010) 15]    
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Hole Boring Acceleration with Few-Cycle Pulses

Future laser systems may produce few-cycle pulses with 
intensities >1022  W/cm-2  and high repetition rate

Such short pulses could “concentrate” all their energy into 
the acceleration of a single ion bunch

In combination with a liquid hydrogen jet they could provide 
an efficient, high repetition rate source of multi-MeV protons

Case study:

Hydrogen slab with n
e
 =50n

c
 =8.6 X 1022  cm-3  

CP laser pulse with =0.8m and 2 cycles duration (FWHM)
Peak intensity I=4.9 X 1022  W/cm-2  (a

0
 =106)

(suggestion by M.Borghesi & M.Zepf, QUB, Belfast)



  

The ion spectrum is improved by a density gradient

Step-like density profiles:
- multiple ion bunches
- multiple peaks in the ion 
spectrum, cut-off energy at 
~140 MeV 

(bunch production time is 
less  than laser cycle)

Inhomogeneous density 
profile (3m preplasma):
- single bunch produced
- spectrum dominated by 
single peak at ~180 MeV, 
<10% energy spread



  

Circular Polarization stabilizes CE phase effects

Laser-matter interaction
with few-cycle pulses is 
sensitive to the 
Carrier-Envelope phase φ: 

E(t)=f(t)sin(ωt+φ)

For linearly polarized pulses 
the ion spectrum is broad
and strongly dependent 
on φ:

For circular polarization,
there is almost no 
dependence on φ 

because |E(t)|2 is
constant in this case

φ=π/2

φ=0



  

2D simulations with the ALaDyn1 code - I

A. Macchi, C. Benedetti, Nucl.Inst.Meth.Phys.Res. A (2010), in press

n
e
 =50n

c
  H slab, 4λ preplasma, CP Gaussian pulse 

2λX2λ , a
0
 =106

1C.Benedetti et al., IEEE Trans. Plasma Sci. 36 (2008) 1790.



  

2D simulations with the ALaDyn1 code - II

1C.Benedetti et al., IEEE Trans. Plasma Sci. 36 (2008) 1790.

Ion spectrum is 
sensitive to focal 
position:
“best” spectrum 
found with waist 
inside the plasma 



  

The “Light Sail” or (Accelerating Mirror) model-I

Model: a perfectly reflecting, rigid mirror
of mass M=ℓS boosted by a plane light wave

G.Marx, Nature 211, 22 (1966)
J.F.L.Simmons and C.R.McInnes, Am.J.Phys. 61, 205 (1993)

Mirror velocity as a function of the laser pulse
intensity I and duration τ and of the surface
density n

e
ℓ of of the target:



  

The “Light Sail” or (Accelerating Mirror) model-II

The efficiency of the acceleration process 
can be obtained by a simple argument of 
conservation of  “number of photons” 
plus the  Doppler shift of the reflected light: 

G.Marx, Nature 211, 22 (1966)
J.F.L.Simmons and C.R.McInnes, Am.J.Phys. 61, 205 (1993)

100% efficiency in the relativistic limit 



  

Comparison of LS model with 1D PIC simulations-I

Laser pulse: a
0
=5-50, τ=8 cycles (“flat-top” envelope)

Thin foil target: n
e
=250n

c 
, ℓ=0.01-0.1   (=7.8-78.5)

A.Macchi, S.Veghini, F.Pegoraro, PRL 103 (2009) 085003

A narrow spectral 
peak is observed for 
a

0
<.

The energy of the 
peak is in good 
agreement with the 
LS formula 

For a
0
>, the 

dynamics is 
dominated by a 
Coulomb explosion
of the foil



  

Energy spectra vs. a
0
 and ℓ:

Dashed line: LS model prediction, dotted line: a
0
=.   

Comparison of LS model with 1D PIC simulations-II

A.Macchi, S.Veghini, F.Pegoraro, PRL 103 (2009) 085003



  

3D simulations “support” 1D modeling

Gaussian intensity profiles 
lead to early “burnthough” 
due to lateral expansion of 
the target
Supergaussian “flat-top” 
profiles, keeping a “quasi-
1D geometry”  are needed 
for efficient acceleration 
and to ensure high 
collimation and 
monoenergeticity

[T.V.Liseikina et al, 
PPCF 50 (2008) 124033]



  

However, some questions remain...

- What determines the “optimal thickness” condition  a
0
<  ?

- Does the foil remain neutral after the acceleration?

- A “puzzle”:  the CPA peak 
contains only ~30% of all 
the ions (and ~64% of 
their energy)

Only the rear side of the 
foil is accelerated (thus 
LS RPA may work for 
double-layer targets!)

 Why there is very 
good agreement of 
the energy with the 
LS formula when using the 
whole mass of the target 
(and not ~30% of it)?

H
(rear 
side)

C
(front 
side)



  

Nonlinear reflectivity accounts for optimal thickness 

Ultrathin slab model: n
e
(x)=n

0
ℓ(x) , foil thickness  ℓ<<

Total radiation pressure in rest frame  P
rad

=(2I/c)R

Nonlinear reflectivity R=R(,a
0
) can be computed analytically

approximated (but rather 
precise) formula:

 R≈2/(2+1)  for a
0
<   

R≈2/a
0

2         for a
0
>   

P
rad

 does not depend on 

 a
0
 for a

0
> ! (since I∼a

0

2)

The maximum boost of the foil is at  a
0
≈  



  

LS with self-induced transparency included

Modified energy formula for R<1, a
0
<  

Ion energy and 
conversion 
efficiency vs.
intensity and 
thickness
(solid: theory,
points: PIC sims.)

9 cycles pulse,
n

e
=250n

c 

A.Macchi et al, New J. Phys. 12 (2010) in press



  

Balance of radiation and electrostatic pressures

For a
0
< the maximum electrostatic pressure  P

es 

(corresponding to complete electron depletion) exceeds the 
radiation pressure; electrons are held back 
(for circular polarization and quasi-equilibrium conditions!)

P
rad

=(2I/c)R < P
es
=2π(en

0
ℓ)2  for a

0
<      

P
rad

=P
es 

for a
0
=  

If a
0
<  and  , R≈ and no electrons are pushed away 

(the ponderomotive force at the rear surface is zero) 

For a
0
  all the electrons must pile up near the rear surface 

in order to establish the equilibrium between P
rad

 and  P
es
 .

→ the compression layer is much thinner than the foil
→ only a fraction of the foil is accelerated  



  

Origin of two ion populations: “Tail” and “Sail”

Sail (S): ions are bunched accelerated by E
x
=f

p 
/e and move 

coherently as a “foil” : monoenergetic component

Tail (T): ions are accelerated by their own space-charge 
field and “Coulomb explode”: broad spectrum component

A.Macchi et al, New J. Phys. 12 (2010) in press



  

1D PIC simulations confirm model suggestions

Laser pulse: a
0
=30, τ=8 cycles (“flat-top” envelope)

Thin foil target: n
e
=250n

c 
, ℓ=0.04 , =31.4,

The ions in the 
compression layer 
form a “sail” thinner 
than the original foil 
and negatively charged 
(excess of electrons)

The excess electrons
“detach” from the sail
near the end of the 
laser pulse, moving 
backwards and leaving 
a neutral bunch  



  

Reduced pressure on ions balances missing inertia

Equilibrium between 
radiation and 
electrostatic pressure 
on electrons:

Electrostatic pressure
on ions:

Calculation on 
equlibrium profiles 
yields:

Resulting equation of 
motion:

→ The Sail moves as if it had the total mass of the foil

Note: there is a mass flow from M
tail

 to M
sail

 to balance the 

decrease of P
rad

 with velocity in the Lab (P
rad

)L=(1-β)/(1+β)P
rad

 

 A.Macchi et al., PRL 103 (2009) 085003; New J. Phys 12 (2010), in press



  

Energy balance

Efficiency (=total percentage of laser energy “absorbed” by 
the system) depends only on 

Energy stored in the 
electrostatic field E

x
 :

“Conversion efficiency” 
into electrostatic 
energy  η

es
 :

For a
0
= , the depletion width d≈ℓ  thus η

es
≈2 : 

most of the stored energy is converted into electrostatic energy
and eventually goes to Tail ions 

But the kinetic energy of the Sail is less than the total!



  

Two-dimensional simulations

2D sims 
for ζ=31.4
and two 
different 
amplitudes

stronger 
electron heating 
and lower 
“penetration” 
threshold with 
respect to 1D:
ion spectrum is 
broad

a
0
 =30a

0
 =20



  

Other issues

At ultrahigh intensities, is RPA affected by 
Radiation Friction effects?

N.Naumova et al, PRL 102 (2009) 025002;
T. Schelegel et al, Phys.Plasmas 16 (2009) 083103
M. Chen et al, arXiV:0909.5144

In particular what about the “Laser Piston” regime where, 
in addition, RPA should be dominant anyway (i.e. also for
Linear Polarization)?

T.Esirkepov et al, PRL 92 (2004) 175003; 96 (2006) 105001

  - See Poster by M. Tamburini 
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