Collimation of laser accelerated ions and their application to therapy

I. Hofmann, GSI Darmstadt

Frontiers of Intense Laser-Matter Interaction Theory, March 3, 2010

- 1. Introduction: proton drivers
- 2. Therapy requirements
- 3. Beam quality source-collimation-transport
- 4. Impact on specific laser acceleration model (Yan et al.)
- 5. Outlook & conclusions

Acknowledgment:

GSI: G. Kraft, A. Orzhekhovskaya, S. Yaramyshev, B. Zielbauer

TUD: M. Roth et al.

MPQ: J. Meyer-ter-Vehn, X. Yan

Conventional p Accelerators → Laser Accelerators?

Beam power – beam quality

	MeV	p/sec				
SNS Oakridge (Spallation Neutron Source):	1000	10 ¹⁶				
FAIR-GSI p driver linac (\rightarrow antiproton facility) :	70	~3x10 ¹³				
Proton therapy (typical):	~ 250	~10 ¹⁰				
SNS FAIR-p-linac HIT	10 Hz	PW laser system				
beam power: 1 MW 100 W $\sim 0.2 \text{ W}$	100) W (in photons)				
\rightarrow Laser p/ion acceleration has a potential to be competitive in therapy						

 \rightarrow efficiency of photons into protons/ions:

- \sim 10⁻³ seems enough, if all ions are "usable"
- ~ 10^{-2} needed if ~10% of ions "usable" for treatment → beam quality

Highly critical "review" of laser-proton therapy by Linz & Alonso PRSTAB10, 094801 (2007):

"accelerator based therapy builds on half a century of development ...

	Conventional		Laser Accelerator
	(Cyclotr		
1.	Beam Energy	200 – 250 MeV	in theory possible
2.	Energy variability	"+" in synchrotron	? demanding
3.	$\Delta E/E$	~ 0.1%	? demanding
4.	Intensity	10 ¹⁰ /sec	10 ⁹ /10 ⁸ at 10/100 Hz
5.	Precision for scanning	"+" in synchrotrons	? large ∆p/p

Linz & Alonso didn't quantify their highly critical arguments against laser acceleration!

Most advanced conventional approach: Heidelberg Ion Therapy Facility (HIT - accelerator built by GSI, fully operational since end of 2009)

lons versus photons (with e⁻ accelerators)

Ion Bragg peak:

inte C⁶⁺ ions (2 sides)

intensity modulated photons (9 fields)

requested dose

10% of requested

Passive beam modulation (cyclotrons) vs. Raster scanning (HIT)

Layering in 3D

source: M. Horcicka

overlay of large number of different energy Bragg peaks to match longitudinally uniform tumor zone

Competition: conventional - laser

- Cost argument: HIT ~ 70 Mio € high!
 - can lasers compete with it?
- Performance
 - beam quality + precision \rightarrow this talk
 - reliability \rightarrow high for synchrotrons
 - operational flexibility
 - no feedback on short laser-ion pulse (<ns)
 - < 5% tolerance on irradiation of a given pixel
 - advancement in treatment?
 - moving organs

Final quality of laser produced ion beams: depends on interfaces!

6 D phase space volume: very small | filamentation? | effective increase | ~ constant

Chromatic effect in collimation lens (solenoid, quadrupoles) blows up effective emittance

emittance = phase space volume

very high laser power \rightarrow

- extremely high initial phase space density
- but strong distortion in lens region along bunch → increased "effective" emittance
- how does it scale?

Detailed tracking simulation with DYNAMION* code (quadrupole channel)

location of collimator

DYNAMION: comparison of quadrupole and solenoid collimators / cone angle of 2.5⁰

Combined chromatic and space charge effects → defines "usable" (=chromatic) emittance

14

Collimator lens technical constraints

coefficient $\alpha_{\rm c}$ depends on

- length of solenoid
- distance source to solenoid (helps reduce B-field)
- (B x length) fixed for MeV
- pulsed solenoid at 10 Hz?

Case study using RPA by X. Yan et al.: laser acceleration of p to 200 MeV using simulation particle spectrum (PRL, 2009) for 200 MeV p

- claim > 10¹⁰ p for energies up to GeV with 10²² W/cm²
- narrow peaked energy spectrum ("clump")
- a "theoretical model"

Radiation Pressure Acceleration from nm thick C foils

- > 3 10²¹ W/cm² / 45 fs
- results from 2D numerical situation with circular polarized light
- critical issues!

Simulation yield folded with constant "chromatic" emittance scaling law

Better match to laser ions: use larger ΔE – more ions per shot ~ 5-10% of total yield!

Bragg peaks overlay

- ~ 50 discrete energies for synchrotron
- use only 5-10 energies with laser (detailed study required)
- vary energy by absorber wedges

< 5% irradiation fluctuation on a volume element required by law!

- fluctuations need to be demonstrated by experiments (center energy stability?)
- crucial issue as only 1 laser shot per volume element – feedback on intensity not feasible (~ ns pulse length)
- employing only 5-10% core of production phase space reduces sensitivity to shot-toshot energy variations

Extension of Yan et al. to C⁶⁺ accelerated to 400 MeV/u

laser based cylindrical voxel with ∆E/E~5% and <25x10⁶ C⁶⁺ → easily available

Requirements compared with HIT

(Heidelberg Ion Therapy)

		p / C ⁶⁺ (HIT)	10 Hz laser system	
	particles / fraction (15 min):	<u>2 10¹² / 5 10¹⁰</u>			
	shared by voxels:	20 k	1	2 -4 k	
\succ	energy range:	<u>50-250 MeV / <mark>88-430 MeV/u</mark></u>			
\triangleright	energy steps:	~ 50		5-10	
\triangleright	intensity variation:	<u>10⁻³ 1</u>			
\triangleright	beam size (fwhm):	<u>4-10 mm</u>			
\triangleright	emittance (before window):	<u>2-3</u>	<u>8 mm mra</u>	<u>ld</u>	
\succ	energy width:	< 0.005		~0.05	

Scaling will be tested at PHELIX laser proton acceleration experiment:

our scaling predicts: $\Delta E/E= +/-0.05$ and x'_{source}= 172 mrad (10°) $\rightarrow \epsilon_{chromatic} \sim 100$ mm mrad $\rightarrow 10^{10}$ protons (0.1% of total yield)

1**∂**¹

Test stand at GSI Z6 experimental area accelerator equipment + new PHELIX beam line

Conclusions

- extremely high initial phase space density degraded after first collimator
 - reduced "usable" fraction of total particle yield due to chromatic effect
 - found a scaling law for emittance
- applied "successfully" to model by X. Yan et al. on RPA
 - cut out small core of production cone (~ 0.5°) and $\Delta E/E \sim 5\%$ to match with emittance requirement
 - "broadened" Bragg peak expected to be sufficient for radiation uniformity for only 5-10 energy groups (→detailed analysis needed)
- open:
 - does RPA acceleration work?
 - shot-shot intensity fluctuations <5% data needed
 - have not examined >>10 Hz (kHz) laser systems