The little foil that can:

Ion-, electron- and photon-beams from lasernanofoil interactions

Björn Manuel Hegelich

Los Alamos National Laboratory

Frontiers in Intense Laser-Matter Interactions Theory, Garching, 3. March. 2010 hegelich@lanl.gov

Colleagues and Collaborators:

LANL: B. J. Albright F. Archuleta K. Bowers J. C. Fernández D. C. Gautier R. Gonzales B.M. Hegelich C. Huang T. Hurry R. Johnson D. Jung S. Letzring S. Palaniyappan S.-M. Reid R. Shah T. Shimada H.-C. Wu L. Yin

LMU München: H. U. Friebel D. Frischke D. Habs B. M. Hegelich A. Henig R. Hörlein C. Huebsch D. Jung D. Kiefer H.-J. Meier J. Schreiber J. Szerypo T. Tashima X. Yan

Kurchatov Institute: T. lvkova

- V. Liechtenstein
- E. Olshanski
- A. Spitsin

Support by LANL LDRD Program Office, Office of Fusion Energy Sciences, and LMU Excellent.

Outline

Nanofoils can be ...
... be a GeV ion source
... do laser pulse shaping
... be a coherent x-ray source
Summary

Nanotargets can be an ion source

Break-Out Afterburner (BOA) and Radiation Pressure Acceleration (RPA)
0.5 GeV peak energies
High conversion efficiency
Quasi-monoenergetic ions

Laser – Nanotarget Interaction: Targets 30nm, 58nm Diamond-Like Carbon foils @ 821 n_{cr} Lin. Pol.

2D-VPIC simulation: 10²¹ W/cm², 540 fs, laser interacting with a 58nm DLC foil

3D-VPIC simulation of a 10²¹ W/cm², 304 fs, laser pulse interacting with a 30nm DLC foil

Parameters of BOA phase:

Duration: ~500fs

• Spatial extend: ~15 μ m

Energy transfer: laser → electrons → ions

Dispersion relation consistent with rel. Buneman instability

EST. 1943

BOA: Comparing Experiment & Sim. 58nm DLC foil, Ipeak= 5x10²⁰ W/cm², I_{ave} = 2x10²⁰ W/cm², t=540fs,

- Simulations agrees with measured spectra (energy, number, angular distribution)
- Protons have same velocity as Carbon
- Spectra retain mono-energetic remnant from adiabatic phase

Theory: reduced model for max. ion energy [Yan, Tajima, Hegelich, Appl. Phys. B. (2009) in press, (arXiv:0904.1466) Lin. Pol.

1000 $E_{sum} = E_{max,i} + E_{max,BOA}$ 900 Exp-Sept08 $\varepsilon_{\max,i}(t_1) = (2\alpha + 1)Q\overline{E}_0(t_1)((1 + \omega t_1)^{1/2\alpha + 1} - 1)$ **VPIC** simulation **5**⁸⁰⁰ Analytical-model 700 600 500 400 300 200 Exp-April09 $\overline{E}_{0}(t_{1}) = m_{e}c^{2}\int_{0}^{t_{1}}(\sqrt{T(t')a^{2}(t')+1}-1)\frac{dt'}{t_{1}}$ ▲ Exp. Sept09 $\varepsilon_{\max,i,BOA} = (2\alpha + 1)Q\overline{E}_0((1 + \omega(t_2 - t_1))^{1/2\alpha + 1} - 1)$

100

0

0

$$t_{_{1}} = \left(\frac{M}{m} \frac{3N^{2}d^{2}}{q_{i}\omega_{_{0}}^{2}c^{2}a_{_{0}}^{3}}\right)^{1/4} = \left(\frac{12}{q_{i}\pi^{2}} \frac{M}{m} \frac{N^{2}d^{2}}{a_{_{0}}^{3}} \frac{\tau^{2}}{c^{2}}\right)^{1/4}$$

$$t_2 = t_1 + \Delta t: n_e/n_{cr} \sim 1$$

EST.1943

$$\Delta t = \frac{x_2 - x_1}{C_{s,\max}} \frac{1}{\sin(\omega t_1)} = \frac{x_1(\gamma^{1/3} - 1)}{C_s} \frac{1}{\sin(\omega t_1)} = \frac{Nd(\gamma^{1/3} - 1)}{\gamma C_s} \frac{1}{\sin(\omega t_1)}$$

BOA: Ongoing Opt. of laser-target param.

- Further contrast improvement on 5-10ps scale: cloaser to ideal pulse shape
- Target thickness obtimized to laser parameters
- 2x improvement of energy @ same angle
- 2 orders of magnitude higher efficiency

Max-Born-Institut

Emax (Proton): 14 MeV Emax (Carbon): 80 MeV

- 10Hz Ti:Sapphire laser system: 700 mJ, 45 fs, 3 x 10¹⁹ W/cm²
- double plasma mirror for contrast enhancement
- DLC-foils of thickness 50nm down to sub-5nm (shot at normal incidence)

CE (Proton): 2% CE (Carbon): 11%

Proton data from experiment using CP

Protons σ Scan from 3 to 50 (a₀=12)

- Equals thickness of 3nm to 60nm
- For $1/3 \leq \sigma/a_0 \leq 3$ we see monoenergetic proton beams with CP, otherwise exponential spectra
- First experimental generation of monoenergetic proton beams with circular polarized light showing signatures of light pressure acceleration (RPA/PSA)
- Monoenergetic spectra measured <u>1.2m behind the target;</u> beam quasi-neurtrality indicated by theory

Almost 2 orders of magnitude more particles into peak than in the 2006 Nature experiment. Approximately 20% energy spread with far from optimal laser parameters.

Main results from F/8 OAP and LP

- 1/10th of intensity due to increased spot size ~20 μm decreased a₀=~3
- linear instead of circular polarization
- mono-energetic feature at 90MeV
- increased energy spread of ∆E/ E~40%
- Mono-energetic feature is reproducable with all thicknesses from 5nm to 100nm

H target

Cyrogenic hydrogen target leads to higher energy and efficiency than CH₂

Cyrogenic hydrogen target at (0.07g/cm³), n_e=42.6 n_{cr}

Target Thickness <i>l</i>	400 nm	1000 nm	1500nm	2500 nm
H ⁺ E _{max}	145 MeV	205 MeV	230MeV	190 MeV

Monoenergetic protons with energy up to GeV can be obtained using higher intensity laser

1e5

19% of laser energy goes into

6x10¹² forward directed

protons with energy >500

MeV

Global

15 20

 x/λ

25 30

1500

Central zone

4.5e+02

4e+02

3e+02

2e+02

1e+02

50 ٥

3.5e+02

2.5e+02

1.5e + 02

*Qiao et al. (PRL 2009):

 \Rightarrow Peak intensity: 1.89x10²² W/ cm², Circ. Pol., 4th order super-Gaussian in space (r=10µm,) Gaussian in time (t=38 fs)

 \Rightarrow E_{laser} ~ 3.5 kJ

Nanotargets can... ... Perform laser pulse shaping

 Pulse shortening – 2nd order autocorrelation measurements

 Pulse shaping – simulations and diagnostic development

Experimental Setup

Glass reflectors attenuate intensity to avoid nonlinear effects

Spectra not analyzed yet

Small sampling (Φ 1cm of Φ 10cm) ought guarantee uniformity (Fourier optics relates focal plane to spatial frequency in near field as $f_x = x/\lambda f_{lens}$. Frequencies >1 cm⁻¹ occur at focal positions >100 µm)

Non-uniformity induced by nearfield diffraction from small aperture of sampling

front-end

target-side (no significant Target attenuation)

Results show shortening

New single shot FROG works and will be able to measure truncated gaussian

Retrieved via algorithm

Nanotaragets can be a coherent x-ray source

Relativistic High Harmonics
Relativistic Electron Mirrors
Coherent Thomson Scattering

Forward relativistic high harmonic generation from nano-DLC targets

Other:

Laser: TRIDENT LANL Energy: 80J **Polarization:** LP PM: no PM

Target: 50nm DLC

Spectrometer: ACTON VM-502 **Focus:** 2"Quartz, 45 deg., rcc , m λc: 100nm MCP,Phos.: -1/2 kV Other:

Date: 14.09.09 **Shot:** 21263

Laser: TRIDENT LANL Energy: missing Polarization: LP PM: no PM

Target: 200nm DLC

0

500

Spectrometer: ACTON VM-502 **Focus:** 2"Quartz, 45 deg., rcc , m λ**c:** 80nm **MCP,Phos.:** -1/2 kV **Other:**

000 0 500 1000

Coherent Thomson Scattering off a laser-driven Relativistic Electron Mirror

A. Einstein, 1905.

For very thin foils laser force can overcome restoring force of ions: Electron break-out observed on Trident!

Electron temperature rises with decreasing foil thickness until spectra become mono-energetic

Expected Performance:

- a_0 =3.5: λ_{ts} =5.7nm (217eV) and duration 267as.
- coherence w/o compression:

• N_e~ 10²⁴ e-/cc
$$\Rightarrow \lambda_{ts}$$
= 10⁻⁸ cm $\Rightarrow E_{photon}$ = 12 keV

 $\Rightarrow \gamma = 55, a_0 = 10, I = 10^{20} \text{ W/cm}^2$

• simulations observe 50x compression of e- layer:

•
$$N_e \sim 5 \times 10^{25} \text{ e-/cc} \Rightarrow \lambda_{ts} = 2.7 \times 10^{-9} \text{ cm} \Rightarrow E_{photon} = 45 \text{ keV}$$

Summary

- Combination of nm-scale targets and ultrahigh contrast pulses leads to a paradigm shift in relativistic laser-matter interaction.
- We have demonstrated the production and integration of nm-scale targets and ultraclean pulses.
 - This enables new particle acceleration mechanisms (BOA, PSA/ALPA):
 - IFI energies (500 MeV) reached with modest laser
 - IFI efficiencies (>10%) achieved: 80 MeV C6+ @ 11% CE with 0.7J Ti:Sa laser
 - IFI spectrum (AE<20%) demonstrated: at Trident with 5nm targets and circular polarization.
 - Laser-pulse shortening and pulse shaping beyond Fourier-transform limit
 - Forward directed HHG from nano-DLC targets
 - Demonstration of quasi-monoenergetic electrons and electron break-out for sub-10nm targets important first step towards Relativistic Electron Mirrors (REM)