laboratoire d'optique appliquée

Palaiseau - FRANCE

On the Control of e-Beam Parameters with Laser Plasma Accelerators

V. Malka, J. Faure, C. Rechatin, O. Lundh, A. Ben Ismail, J. Lim,

Laboratoire d'Optique Appliquée, ENSTA-Ecole Polytechnique, CNRS, 91761 Palaiseau, France

E. Lefebvre, X. Davoine

CEA/DAM Ile-de-France, France

A. Lifschitz

LPGP, CNRS- University of Orsay, France

victor.malka@ensta.fr

Partially supported by CARE/FP6-Euroleap/FP6-Accel1/ANR-PARIS/ERC contracts

Frontiers in Intense Laser-Matter Interactions Theory, Garching, Germany – March 1-3 (2010)

http://loa.ensta.fr/

loa

UMR 7639

Part 1 : Controlling the e-beam parameters with two colliding laser pulses

Part 2 : Beam loading effects

Part 3 : Conclusion and perspectives

Controlling the injection

A second laser beam is used to heat electrons

Ponderomotive force of beatwave: $F_p \sim 2a_0a_1/\lambda_0$ (a_0 et a_1 can be "weak") Boost electrons locally and injects them INJECTION IS LOCAL and IN FIRST BUCKET

E. Esarey *et al.*, PRL **79**, 2682 (1997), G. Fubiani *et al.*, PRE **70**, 016402 (2004), H. Kotaki *et al.*, PoP **11** 3296 (2004), J. Faure *et al.*, Nature (2006)

Frontiers in Intense Laser-Matter Interactions Theory, Garching, Germany – March 1-3 (2010

http://loa.ensta.fr/

loa

UMR 7639

Non collinear geometry

Advantages

No feedback (2 mJ of light scattered from the plasma)

Easier access to use e-beams for applications or diagnostics

Drawbacks

- •Synchronization is more critical
- •Tuning the energy is more difficult

 θ =4.5°. Focal spots are about 25 µm FWHM. Beam overlap occurs over L=(w₀+ w₁)/tan(θ) L ~ 600-1000 µm : not that critical + tuning still possible

Experimental set up

Stable monoenergetic beams @200 MeV

Very little electrons at low energy, $\delta E/E=5\%$ limited by spectrometer

Very stable quasi-mono energetic electron beam

Tunable energy of the e-beam

Frontiers in Intense Laser-Matter Interactions Theory, Garching, Germany – March 1-3 (2010)

loa

POLYTECHNIQUE

Tuning the charge & the energy spread

• Charge can be tuned by

Controlling Heating electrons processes \rightarrow Changing intensity of injection beam: smaller a_1 means less heating and less trapping

• Energy spread can be tuned by

Decreasing the phase space volume V_{trap} of trapped electrons by changing a_1 . Changing the ratio $c\tau/\lambda_p$ by changing n_e (by changing λ_p)

Evolution of injection volume with a_1 for $a_0 = 2$, $n_e = 7.10^{18}$ cm⁻³. Fields are computed for the 1D case and the beatwave separatrix corresponds to the circular polarization case.

In practice, energy spread and charge are correlated:

Decreasing a_1 decreases the charge but also V_{trap} , and in consequence the energy spread

Tuning the charge and the energy spread with the plasma density

Frontiers in Intense Laser-Matter Interactions Theory, Garching, Germany – March 1-3 (2010)

UMR 7639

Tuning the charge and the energy spread with injection beam intensity a₁

Charge from 60 pC to 5 pC, ΔE from 20 to 5 MeV

C. Rechatin et al., Phys. Rev. Lett. 2009

loa

Tuning the charge with the polarization angle

Frontiers in Intense Laser-Matter Interactions Theory, Garching, Germany – March 1-3 (2010)

http://loa.ensta.fr/

UMR 7639

Summary of charge for II & \perp Polarization

PIC simulations (1D)
≠ Injection threshold
3-5 less charge

=> Good agreement with experimental data

=> Stochastic heating and plasma wave inhibition

C. Rechatin *et al.*, **NJP11**, 013011 (2009) V. Malka *et al.*, **Phys. Plasmas** (2009)

Stochastic heating with cross-polarized laser pulses

For orthogonal polarization: stochastic heating is still present (a₀>1, p_z component)
 For linearly polarized lasers, the stochastic heating mechanism is more efficient

Parallel polarizations: beatwave & wake inhibition:

1D PIC, parameters : $a_0=2$, $a_1=0.4$, $\tau=30$ fs, $n_e=7$ 10¹⁸ cm ⁻³

The beatwave prevents a large scale collective oscillation and thus the plasma wave excitation :

=>The wakefield is inhibited at the collision position.

=>Trapping is more difficult

Orthogonal polarizations: no beatwave, no wake inhibition:

1D PIC, parameters : $a_0=2$, $a_1=0.4$, $\tau=30$ fs, $n_2=7$ 10¹⁸ cm ⁻³

Electron dynamic: case of parallel and crossed polarisations

V. Malka et al., Phys. of Plasmas 16, 056701 (2009).

Frontiers in Intense Laser-Matter Interactions Theory, Garching, Germany – March 1-3 (2010)

loa

3 D PIC simulations results

3D PIC simulations feature of laser evolution is needed to predict precisely experimental data.

Evolution of laser Amplitude and Shape

Energy evolution

X. Davoine et al., Phys. of Plasmas **15**, 113102 (2008)

Frontiers in Intense Laser-Matter Interactions Theory, Garching, Germany – March 1-3 (2010)

loa

Part 1 : Controlling the e-beam parameters with two colliding laser pulses

Part 2 : Beam loading effects

Part 3 : Conclusion and perspectives

Frontiers in Intense Laser-Matter Interactions Theory, Garching, Germany – March 1-3 (2010)

UMR 76.39

http://loa.ensta.fr/

Beam Loading : Linear regime

Parameters: n_e =1.5 10¹⁹ cm⁻³, τ =35fs, E=0.6J, I=2 10¹⁸ W/cm²

Laser wakefield

 $n_e = 7 \ 10^{18} \text{ cm}^{-3}, \tau = 30 \text{ fs}, a_0 = 0.5$

E-beam wakefield

 n_b/n_e =0.11, τ = 10fs, d_{FWHM} =4 μ m (Q=7pC)

The end of the bunch experiments a modified wakefield (less accelerated electrons)

Limitation of the accelerated charge Influence on energy and energy spread

loa

T. Katsouleas 87 et al., M. Tzoufras et al., Phys. Rev. Lett., 101 (2008)

Beam Loading (NL regime) : Observables

Low charge => Energy spread important

Optimal charge => Flat E-field

=> Low energy spread

High charge => End of the beam decelerated => High energy spread

Observables : correlation charge / energy spread and energy

http://loa.ensta.fr/

UMR 7639

Clear correlation between charge and energy

Correlation !

A varying a₁ data set gives a broader charge variation

Is it only due to beam loading effects?

Injection volume effect on electrons energy

When a_1 increases:

•Electrons are more heated during the collision

•They are trapped far away from the speratrix (i.e. lower E field)

•They are less accelerated

Both effects will decrease the electron energy

⇒Need of PIC simulations to conclude

Simulations without Beam loading effect Change of injection volume only

3D PIC simulations with experiment parameters (300 μ m acceleration) with p_z>12m_ec are treated as test particle : no beam loading

Beam loading effects

3D PIC simulations of the experiment with and without beam loading $a_1=0.3, Q_{peak}=48pC$

Only changes the high energy cut-off => BL improves the energy spread Experiment : 0.8 GV.m⁻¹.pC⁻¹, simulations : 1 GV.m⁻¹.pC⁻¹

Beam loading only : over an optimal loads

3D PIC simulations of the experiment with and without beam loading $a_1=0.4$, $Q_{peak}=72pC$

Leading electrons have the highest energy : BL deteriores the energy spread Optimal load : 20-40 pC

Measurement of the optimal charge

Behaviour for optimal charge : experiments/simulations

Simulations PIC : Q_{tot} ~ 50 pC

Expériences PIC : Q_{tot} ~ 20 pC

Optimal load : 20-40 pC

Optimum charge and energy spread

For an charge less than the optimum :

an increase of the charge will increase ΔE due to the increase of the injection volume & a reduction of ΔE due to beam loading effect

For charge greater that the optimum : Both effects will increase the energy spread

What is the miminal energy spread?

High resolution electron spectrometer

In collaboration with A. Specka, H. Videau LLR, CNRS, Ecole Polytechnique

Frontiers in Intense Laser-Matter Interactions Theory, Garching, Germany – March 1-3 (2010)

loa

1% energy spread beams

ÉCOLE

Part 1 : Controlling the e-beam parameters with two colliding laser pulses

Part 2 : Beam loading effects

Part 3 : Conclusion and perspectives

Frontiers in Intense Laser-Matter Interactions Theory, Garching, Germany – March 1-3 (2010)

UMR 76.39

Conclusion

Accelerators point of view : Two laser beams allow the control of many e-beam parameters

- Good beam quality & Monoenergetic dE/E down to 1 %
- Beam is very stable
- Energy is tunable: 20-300 MeV
- Charge is tunable: 1 to tens of pC
- Energy spread is tunable: 1 to 10 %
- Ultra short e-bunch (see O. Lundh): 1,5 fs rms

Physics point of view : many new aspects of the interaction have been revealed :

Heating processes with crossed polarized lasers Inhibited plasma waves effect Beam loading effect : optimum charge of 20pC

Perspectives

What Next ?

- Push energy limit (>1 GeV)
- Measure the emittance
- Increase injected charge: larger a_1 ?
- Cold injection scheme

Results extremely important for :

Designing future accelerators Light source development for XFEL and for applications (chemistry, radiotherapy, material science)

V. Malka et al., nature physics 4, June 2008

loc

