Functionalization of laser-matter interaction for condensed matter applications

Z. G. Zhu, A. Moskalenko, J. Berakdar

MARTIN-LUTHER-UNIVERSITY HALLE-WITTENBERG

http://qft0.physik.uni-halle.de

- 1. experimental status
- 2. photo-induced polarization and charge currents
- 3. magnetic pulses: generation and control
- 4. applications
- 5. further developments and perspectives

atomic force microscopy (AFM): InAs/GaAs Offermans *et al.* Appl. Phys. Lett. 87, 131902 (2005)

AFM: Si rings You *et al.* PRL **98,** 166102 (2007)

200 nm

(2001)

[110] 110]

100 nm

ring etched in GaAs 2DEG

(labeled

150nm

SEM of Ag split-rings arrayed in 260 nm period. Clark *et al.* APL **93**, 023121 (2008)

Radius ~ 8µm

Ariwala et al. PRL ('01) Nb field coils

Kläui *et al*. APL **85**, 5637 (`04); PRL **94**, 106601 (`05)

polycrystalline Co rings outer diameter = $1.65 \mu m$ width = 530 nm; thickness = 34 nm

dodecahedrane $C_{20}H_{20}$

C₅₄₀

dodeca-aza[60] fullerene C₄₈N₁₂

Pavlyukh, Berakdar Chem. Phys. Lett. 468, 313 (2009)

Au₇₂

dynamics in nanostructures

J. Berakdar, MLU , Halle

persistent currents

magnetic flux

 $\phi = \pi \rho_0^2 B$

stationary single particle states

$$\psi(s) = \frac{1}{\sqrt{L}} e^{i \bar{k}_m s}$$

$$\psi(\theta) = \frac{1}{\sqrt{L}} e^{i \bar{k}_m s} e^{-i \theta \phi/\phi_0}$$

$$E_{m} = \frac{\hbar^{2} k_{m}^{2}}{2m^{*}}, \quad k_{m} = \frac{2\pi}{L} \left(m + \frac{\phi}{\phi_{0}} \right)$$
$$V_{m} = \frac{\hbar}{m^{*}} \frac{2\pi}{L} (m + \phi / \phi_{0})$$

$$I_m \approx \frac{eV_m}{L}$$

 $= \rho_0 \theta$

 ρ_0

$$V_m = -V_{-m} \implies I_m + I_{-m} = 0$$

$$\phi \approx \phi_0 \Rightarrow V_m \neq -V_{-m} \Rightarrow B \approx \frac{\phi_0}{\pi \rho_0^2}$$

→ Benzene ring → B~5000 T
 Mailly et al. 1993 → I~ 4 nA

Aharonov-Bohm geometry

charge currents in nanostructures

J. Berakdar, MLU , Halle

density- matrix formalism

Moskalenko, Berakdar PRB 70, 161303 (R) ('06); Rossi & Kuhn, Rev. Mod. Phys. 74, 895 (2002)

Ê

problem

of motion

single-particle density matrix $\rho_{m,m'} = \langle m | \hat{\rho} | m' \rangle = \text{Tr}[\hat{\Sigma} \hat{a}_m^{\dagger} \hat{a}_{m'}] \equiv \langle \hat{a}_m^{\dagger} \hat{a}_{m'} \rangle$

$$\begin{aligned} \widehat{H}_{\text{tot}} &= \widehat{H}_{0}^{\text{carr}} + \widehat{H}_{0}^{\text{phon}} + \widehat{H}_{C} + \widehat{H}_{P} + \widehat{V} \\ \widehat{H}_{0}^{\text{carr}} &= \sum_{m} \varepsilon_{m} \widehat{a}_{m}^{\dagger} \widehat{a}_{m} \qquad \widehat{H}_{0}^{\text{phon}} = \sum_{\vec{q}} \hbar \omega_{\vec{q}} \left(b_{\vec{q}}^{\dagger} b_{\vec{q}} + \frac{1}{2} \right) \\ \widehat{H}_{C} &= \frac{1}{2} \sum_{m_{1},m_{2},m} V_{m} \ \widehat{a}_{m_{1}}^{\dagger} \widehat{a}_{m_{2}}^{\dagger} \widehat{a}_{m_{2}+m} \widehat{a}_{m_{1}-m} \qquad \text{electron-electron interaction} \\ \widehat{H}_{P} &= \sum_{\vec{q},m,m'} G_{\vec{q}}^{m'} b_{\vec{q}} a_{m}^{\dagger} a_{m-m'} + \text{h.c.} \qquad \text{electron-phonon interaction} \\ \widehat{V} &= -eE(t) \ \rho_{0} \sum_{m,m'} \langle m | \cos \theta | m' \rangle a_{m}^{\dagger} a_{m'} \qquad - \text{interaction with light field} \\ \widehat{\langle O \rangle} &= tr[\widehat{O}\widehat{\rho}(t)] \end{aligned}$$
Heisenberg equations

005

of ODE's

 \square

scheme

pulse-induced dynamics

single-cycle pulses $m\ddot{z} = -p \,\delta(t) \implies \begin{cases} \dot{z} = \frac{-p}{m} + \dot{z}_0 & \text{for } t > 0\\ \dot{z} = \dot{z}_0 & \text{for } t < 0 \end{cases}$

160 D. You *et al.*, Opt. Lett. 18, 290 (1993). 80 40 $p = \int_{0}^{\tau_{d}} E(t)$ τ_{d} time [ps]

photo-induced polarization dynamics

pulse-induced dynamics

few-cycle pulses

photo-induced polarization dynamics

induced dipole moment

₫

 ρ_0

Mailly *et al.* PRL **70**, 2020 (´93)

$$\vec{\mu} = tr[e\hat{r}\hat{\rho}(t)], \quad \mu_{\parallel} = er_0 \sum_m \operatorname{Re}[\rho_{m+1,m}], \quad \mu_{\perp} = er_0 \sum_m \operatorname{Im}[\rho_{m+1,m}]$$

time dependence of the total induced electric **dipole moments** in 10⁶ D. E is the peak-field amplitude. Pulse duration is 1 ps.

dynamical electric dipole moment of ring structures

photo-induced polarization dynamics

ring as light source

 $I(\omega) \sim \left|\mu_k(\omega)\right|^2$

photo-induced polarization dynamics

ring as light source

Clark et al. APL 93, 023121 (2008)

 $\tau_{d} = 1 ps$ $E = 1 kV cm^{-1}$ $V_{0} = 10 meV$ $\omega_{0} \approx 0.1 THz$

photo-induced polarization dynamics

J. Berakdar, MLU-Halle, Germany

pulse-induced spin dynamics

Zhu, Berakdar Phys. Rev. B 77, 235438 ('08)

photo-induced polarization dynamics

charge current generation

photo-induced currents

induced magnetization

1 Bohr magneton =
$$e\hbar/2m_e \sim 7 \cdot 10^{-5} \text{ eV/T}$$

 $I=1\mu A \rightarrow M\sim 112 \text{ eV/Tesla}$

photo-induced currents

induced magnetization in ring chains

Matos, Berakdar Phys. Rev. Lett. 94, 166801 (`05)

photo-induced currents

J. Berakdar, LMU, Halle, Germany

applications...

C. Thirion et al. Nature Mat. 2, 524 ('03)

applications...

letters to nature

The ultimate speed of magnetic switching in granular recording media

I. Tudosa 1 , C. Stamm 1 , A. B. Kashuba 2 , F. King 3 , H. C. Siegmann 1 , J. Stöhr 1 , G. Ju 4 , B. Lu 4 & D. Weller 4

We therefore believe that our experiment reveals 'fracture of the magnetization' under the load of the fast and high field pulses, putting an end to deterministic switching as we know it today. \Box

Stanford linear accelerator τ_d =2.3 ps, several T pulses

Back et al., Phys. Rev. Lett. 81, 3251 (1998)

spin dynamic

photo-induced internal magnetic fields

inverse Faraday effect

$$M \propto \chi \Big[E \! imes \! E^{st} \Big]$$

Pitaevskii JETP **12**, 1008 (1961) van der Ziel PRL **15**, 190 (1965)

Th. Rasing group (Nijmegen):

magnetization by instantaneous photomagnetic pulses

Nature 429 850 (2004)

Nature 435 655 (2005)

Phys. Rev. Lett. 99, 047601 (2007)

Photo-induced magnetic fields

photo-induced internal magnetic fields

inverse Faraday effect

$$M \propto \chi \Big[E \! imes \! E^{st} \Big]$$

Pitaevskii JETP **12**, 1008 (1961) van der Ziel PRL **15**, 190 (1965)

Off-resonance, high-frequency strong fields

$$\operatorname{Re}\left\langle j(\omega \sim 0)\right\rangle \propto \frac{i}{2\pi \langle n_0 \rangle} \nabla \times \left(\sigma E \times \sigma * E *\right)$$

Photo-induced magnetic fields

photo-induced internal magnetic fields

Allen, Padgett groupPRA 45, 8185 (`92)(Glasgow)Opt. Com. 96, 123 ('93)

Quinteiro, Berakdar, Optics Exp. 17, 20466 (2009)

Photo-induced magnetic fields

- 1. experimental status
- 2. photo-induced polarization and charge currents
- 3. magnetic pulses: generation and control
- 4. applications
- 5. future directions