Photoinduced Dynamics at Surfaces

Thorsten Klüner Theoretical Chemistry University Oldenburg, Germany

Why Surface Photochemistry ?

- Photochemical reactions at dust particles in our atmosphere

- Interstellar chemical reactions

- Heterogeneous photocatalysis (light acting as reagent)

Chemical reactions at surfaces under influence of light

Photocatalysis: Titanium dioxide (TiO₂)

self-cleaning surfaces

anti-fog coating

anti-bacterial coating

Photocatalysis: Titanium dioxide (TiO₂)

self-cleaning surfaces anti-fog coating anti-bacterial coating

goal: micrscopic understanding of photochemical elementary processes on surfaces by: reduction of intrinsic complexity of phenomenon under study

understanding of 1) surface photochemistry 2) surface spectroscopy

Simplest elementary reaction:

Laser-induced desorption of diatomic molecules from "simple" surfaces

understanding of1) surface photochemistry2) surface spectroscopy

high dimensional quantum dynamics on ab initio potential energy surfaces

understanding of 1) surface photochemistry 2) surface spectroscopy

high dimensional quantum dynamics on ab initio potential energy surfaces

Rempi-Experiment

Rempi-Experiment

Cluster Models

Ni₅O₁₇Mg₃₃⁴²⁺/point charge field (not shown)

Cluster Models reliable for subtrates with localized electronic structure

Cluster Models

Convergence studies

- cluster size
- degrees of freedom

- basis set

- active space

correlation model
 systematic hierarchy
 (CASSCF, CASPT-2
 CCSD, CCSD(T))

for

ground state

and

excited states

Cluster Models

Point charge field not shown

Ground state: CASSCF/CASPT-2 Excited state: CASSCF/CI

Cluster Models

Convergence studies

- cluster size
- degrees of freedom

- basis set

- active space

correlation model
 systematic hierarchy
 (CASSCF, CASPT-2
 CCSD, CCSD(T))

for

ground state

and

excited states

	Adsorption Energy/eV		
Cluster Model	CASSCF(2n+1,2n+1)	CASPT2	
NO-(NiO ₅ Mg ₁₃) ¹⁸⁺ /PCF	0.46 (0.37)	-0.34 (-0.70)	
NO- $(Ni_2O_8Mg_{18})^{24+}/PCF$	0.46 (0.37)	-0.38 (-0.74)	
NO-(Ni ₃ O ₁₁ Mg ₂₃) ³⁰⁺ /PCF	0.46 (0.37)	-0.41 (-0.79)	
NO-(Ni ₅ O ₁₇ Mg ₃₃) ⁴²⁺ /PCF	0.46 (0.37)	-0.46 (-0.87)	
experiment		-0.57	

Results obtained with (smaller) basis set 1 Values without BSSE correction are in parentheses

	Adsorption Energy/eV		
Cluster Model	CASSCF(2n+1,2n+1)	CASPT2	
NO-(NiO ₅ Mg ₁₃) ¹⁸⁺ /PCF	0.46 (0.37)	-0.34 (-0.70)	
$NO-(Ni_2O_8Mg_{18})^{24+}/PCF$	0.46 (0.37)	-0.38 (-0.74)	
NO- $(Ni_{3}O_{11}Mg_{23})^{30+}/PCF$	0.46 (0.37)	-0.41 (-0.79)	
NO-(Ni ₅ O ₁₇ Mg ₃₃) ⁴²⁺ /PCF	0.46 (0.37)	-0.46 (-0.87)	
experiment		-0.57	

Results obtained with (smaller) basis set 1 Values without BSSE correction are in parentheses

One-particle basis error (see above): -0.07 eV Zero point energy correction: +0.03 eV

Best estimate of adsorption energy: -0.46 eV -0.07 eV +0.03 eV = -0.50 eV

Ground state

Ground state

Excited state

Excited state

Excited state

quantum wave packet dynamics

Desorption Mechanism

[8] P. R. Antoniewicz *Phys. Rev. Lett. B* **21**, 3811 (1980).
[9] D. Menzel und R. Gomer, *J. Chem. Phys.* **41**, 3311 (1964).
[10] P. A. Redhead, *Can. J. Phys.* **42**, 886 (1964).

Wave Packet Calculations

Time dependent Schrödinger equation:

$$\hat{H}(q,t)\Psi(q,t) = i\hbar \frac{\partial}{\partial t}\Psi(q,t)$$

$$\Psi(q,t) = \exp\left(-\frac{i}{\hbar}\hat{H}t\right)\Psi(q,t=0)$$

Time evolution of nuclear wave function on potential surface

Wave Packet Calculations

Time dependent Schrödinger equation:

$$\hat{H}(q,t)\Psi(q,t) = i\hbar \frac{\partial}{\partial t}\Psi(q,t)$$

$$\Psi(q,t) = \exp\left(-\frac{i}{\hbar}\hat{H}t\right)\Psi(q,t=0)$$

 Time evolution of nuclear wave function on potential surface

Hamiltonian

$$\hat{H}(Z, X, \theta, \phi) = -\frac{1}{2M} \frac{\partial^2}{\partial Z^2} - \frac{1}{2M} \frac{\partial^2}{\partial X^2} - \frac{1}{2M} \frac{\partial^2}{\partial X^2} - \frac{1}{2M} \frac{\partial^2}{\partial X^2} + \frac{1}{2I} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right) + \hat{V}(Z, X, \theta, \phi) \checkmark$$

$$Ab initio Potential Surface$$

Wave Packet Calculations

Time dependent Schrödinger equation:

$$\hat{H}(q,t)\Psi(q,t) = i\hbar \frac{\partial}{\partial t}\Psi(q,t)$$

$$\Psi(q,t) = \exp\left(-\frac{i}{\hbar}\hat{H}t\right)\Psi(q,t=0)$$

 Time evolution of nuclear wave function on potential surface

Hamiltonian

$$\hat{H}(Z, X, \theta, \phi) = -\frac{1}{2M} \frac{\partial^2}{\partial Z^2} - \frac{1}{2M} \frac{\partial^2}{\partial X^2} - \frac{1}{2M} \frac{\partial^2}{\partial X^2} - \frac{1}{2M} \frac{\partial^2}{\partial X^2} + \frac{1}{2I} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right) + \hat{V}(Z, X, \theta, \phi) \checkmark$$

$$Ab initio Potential Surface$$

Stochastic Wave Packet Calculations:

Excitation-Deexcitation cycle (Jumping Wavepackets):

$$\Psi(t;t_n) = e^{-i\hat{H}_{gr}(t-t_n)} \cdot e^{-i\hat{H}_{ex}t_n} \cdot \Psi(0)$$

• FC-Excitation without explicit treatment of laser pulse

Wave Packet Calculations

Time dependent Schrödinger equation:

$$\hat{H}(q,t)\Psi(q,t) = i\hbar \frac{\partial}{\partial t}\Psi(q,t)$$

$$\Psi(q,t) = \exp\left(-\frac{i}{\hbar}\hat{H}t\right)\Psi(q,t=0)$$

 Time evolution of nuclear wave function on potential surface

<u>Hamiltonian</u>

$$\hat{H}(Z, X, \theta, \phi) = -\frac{1}{2M} \frac{\partial^2}{\partial Z^2} - \frac{1}{2M} \frac{\partial^2}{\partial X^2} - \frac{1}{2M} \frac{\partial^2}{\partial X^2} - \frac{1}{2M} \frac{\partial^2}{\partial X^2} + \frac{1}{2I} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right) + \hat{V}(Z, X, \theta, \phi) \checkmark$$

$$Ab initio Potential Surface$$

Stochastic Wave Packet Calculations:

Excitation-Deexcitation cycle (Jumping Wavepackets):

$$\Psi(t;t_n) = e^{-i\hat{H}_{gr}(t-t_n)} \cdot e^{-i\hat{H}_{ex}t_n} \cdot \Psi(0)$$

• FC-Excitation without explicit treatment of laser pulse **Asymptotic Observables** $A(t;t_n) = \left\langle \Psi(t;t_n) \middle| \hat{A} \middle| \Psi(t;t_n) \right\rangle$

Wave Packet Calculations

Time dependent Schrödinger equation:

$$\hat{H}(q,t)\Psi(q,t) = i\hbar \frac{\partial}{\partial t}\Psi(q,t)$$

$$\Psi(q,t) = \exp\left(-\frac{i}{\hbar}\hat{H}t\right)\Psi(q,t=0)$$

 Time evolution of nuclear wave function on potential surface

<u>Hamiltonian</u>

$$\hat{H}(Z, X, \theta, \phi) = -\frac{1}{2M} \frac{\partial^2}{\partial Z^2} - \frac{1}{2M} \frac{\partial^2}{\partial X^2} - \frac{1}{2M} \frac{\partial^2}{\partial X^2} - \frac{1}{2M} \frac{\partial^2}{\partial X^2} + \frac{1}{2I} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right) + \hat{V}(Z, X, \theta, \phi) \checkmark$$

$$Ab initio Potential Surface$$

Stochastic Wave Packet Calculations:

Excitation-Deexcitation cycle (Jumping Wavepackets):

$$\Psi(t;t_n) = e^{-i\hat{H}_{gr}(t-t_n)} \cdot e^{-i\hat{H}_{ex}t_n} \cdot \Psi(0)$$

• FC-Excitation without explicit treatment of laser pulse **Asymptotic Observables** $A(t;t_n) = \left\langle \Psi(t;t_n) \middle| \hat{A} \middle| \Psi(t;t_n) \right\rangle$

Lifetime averaging: J.W. Gadzuk, Surf. Sci. 342, 345 (1995)

$$A(t;\tau) = \frac{\sum_{n=1}^{n_{max}} A(t;t_n) \exp\left(-\frac{t_n}{\tau}\right)}{\sum_{n=1}^{n_{max}} \exp\left(-\frac{t_n}{\tau}\right)}$$

- Exponential decay of excited state
- Equivalent scheme: density matrix propagation for open system

SGI Altix4700 HLRB II Leibniz-Computing Centre Munich

Supercomputer HLRB II (2007)

Processor clock: 1.6 GHz Total number of cores: 9728 Total peak perf.: 62,3 TFlop/s Total main memory: 39 TB Total disk space: 600 TB Total weight: 103 tons Total electrical power: 1100 kVA

Supercomputer HLRB II (2007)

Processor clock: 1.6 GHz Total number of cores: 9728 Total peak perf.: 62,3 TFlop/s Total main memory: 39 TB Total disk space: 600 TB Total weight: 103 tons Total electrical power: 1100 kVA

Factor: 10¹³

K. Zuse Z3 (1941)

Processor clock: 5,33 Hz Total peak perf.: 3 Flop/s Total main memory: 176 Byte

Speedup Analysis

Dynamics

Excitation

Dynamics

Excitation

Excited state propagation

Dynamics

New desorption mechanism: Anti-Antoniewicz

Results

Results

Results

- Correct velocity range
- Bimodal distributions
- Wave packet bifurcation in lateral coordinate!
- New desorption mechanism (Anti-Antoniewicz)

J. Phys. Chem. A **111**,13233 (2007) Phys. Chem. Chem. Phys. **8**, 1584 (2006) Chem. Phys. Lett. **415**, 150 (2005)

Experiment and Theory

[1] J.-T. Hoeft et al. Phys. Rev. Lett. 87, 8 (2001)[2] R. Wichtendahl et al. Surf. Sci. 423, 90 (1999)

- TPD/Photoelectron diffraction
- Linear adsorption geometry
- Adsorption energy: 0.3 eV

Experiment and Theory

[1] J.-T. Hoeft et al. Phys. Rev. Lett. 87, 8 (2001)[2] R. Wichtendahl et al. Surf. Sci. 423, 90 (1999)

- TPD/Photoelectron diffraction
- Linear adsorption geometry
- Adsorption energy: 0.3 eV

- CASSCF/CASPT-2 and CCSD(T)
- Linear adsorption geometry
- Adsorption energy: 0.24 eV

Good agreement between theory and experiment

Experiment and Theory

Monomodal distributions

B. Redlich et al, Chem. Phys. Lett. **420**, 110 (2006)

- CASSCF/CASPT-2 and CCSD(T)
- Linear adsorption geometry
- Adsorption energy: 0.24 eV
 Agreement: theory and experiment

Mechansim

CO-internal-($5\sigma \rightarrow 2\pi^*$)-excitation

Mechansim

CO-internal-($5\sigma \rightarrow 2\pi^*$)-excitation

[1] E. S. Nielson, P. JØrgensen und J. Odderhede, J. Chem. Phys. 73, 6238 (1980).

CO-internal-($5\sigma \rightarrow 2\pi^*$)-excitation

[1] E. S. Nielson, P. JØrgensen und J. Odderhede, J. Chem. Phys. 73, 6238 (1980).

CO-NiO₅Mg¹⁸⁺: **CASSCF(4,5)/CASPT-2** Active molecular orbitals

CO-NiO₅**Mg**¹⁸⁺₁₃**: CASSCF(4,5)/CASPT-2** Active molecular orbitals

Excitation energy / eV				
CAS(4,5)				
State	CASSCF	CASPT2		
ã⁵E	6.88	6.18		
óΕ	6.13	4.54		
ã¹E	5.90	4.34		

Excellent agreement with experiment (4.66 eV)

Excitation Mechanism

c) NiO₅Mg¹⁸⁺/PCF

Excitation Mechanism

Excitation Mechanism

CO-NiO₅Mg¹⁸⁺₁₃: CASPT-2

Excited state involved: $\tilde{a}^{3}E$ Antoniewicz-like desorption scenario

System: CO/NiO(100)

3D-Potential Energy Surfaces

Ground State

Excited State

Results

[1] B. Redlich, A. Kirilyuk, T. Holger, G. von Helden, G.Meijer und H. Zacharias, Chem. Phys. Lett. 420, 110 (2006).

Results

Results:

- Good agreement with experiment
- CO(5 $\sigma \rightarrow 2\pi^*$) excited state
- Antoniewicz mechanism due to covalent Ni-C bond in excited state
- Resonance lifetime 4-12 fs
- 1D-calculations sufficient

[1] B. Redlich, A. Kirilyuk, T. Holger, G. von Helden, G.Meijer und H. Zacharias, Chem. Phys. Lett. 420, 110 (2006).

Desorption Mechanism

[8] P. R. Antoniewicz *Phys. Rev. Lett. B* **21**, 3811 (1980).
[9] D. Menzel und R. Gomer, *J. Chem. Phys.* **41**, 3311 (1964).
[10] P. A. Redhead, *Can. J. Phys.* **42**, 886 (1964).

Surrogate Hamiltonian Method

• Separation of the total system Hamiltonian:

 $\hat{H} = \hat{H}_S + \hat{H}_B + \hat{H}_{SB} + \hat{H}_{SF}(t) + \hat{H}_{BF}(t)$

- *implicit* description of the bath: TLS
- representative bath modes are included in the description:

$$\hat{H}_B \approx \sum_{k=1}^{\infty} \hat{\tilde{n}}_k^{true} \longrightarrow \sum_{k=1}^N \hat{n}_k^{rep}$$

Gains	Costs
 well-suited for ultrafast events 	 enormous numerical effort
 controllable approximation 	

Introduction

Surrogate Hamiltonian Method NO/NiO(100): system

$$\hat{H}_{S} = \begin{pmatrix} \hat{T} + V_{g}(Z, \vartheta) & 0 \\ 0 & \hat{T} + V_{e}(Z, \vartheta) \end{pmatrix}$$
$$\hat{H}_{SF} = \begin{pmatrix} 0 & E(t)\hat{\mu}_{tr} \\ E^{*}(t)\hat{\mu}_{tr} & 0 \end{pmatrix}$$

$$f = \frac{2}{3} E_{fi} |\mu_{fi}|^2 \qquad \mu_{tr}(Z) = \sqrt{\frac{3}{2} \frac{\exp(-Z)}{0.15}}$$

$$E(t) = E_0 \exp\left(-\frac{(t - t_{max})^2}{2\sigma_P^2}\right) \exp\left(i\omega_L t\right)$$

Surrogate Hamiltonian Method

NO/NiO(100): bath

$$\hat{H}_B = \varepsilon \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i + \frac{\eta}{\log(N)} \sum_{ij(NN)} \left(\hat{\sigma}_i^+ \hat{\sigma}_j + \hat{\sigma}_j^+ \hat{\sigma}_i \right)$$
$$\hat{H}_{\sigma D} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \otimes \sum_i \hat{V}_i (\hat{\sigma}_i^+ + \hat{\sigma}_i)$$

$$\hat{H}_{SB} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes \sum_{i} \hat{V}_{i}(\hat{\sigma}_{i}^{+} + \hat{\sigma}_{i})$$

$$\hat{V}_{i} = \hat{\vec{\mu}}_{S} \cdot \vec{E}_{i} = \frac{\hat{\vec{\mu}}_{S} \cdot \hat{\vec{\mu}}_{i}}{|\hat{\vec{r}}_{i}|^{3}} - 3 \frac{(\hat{\vec{\mu}}_{S} \cdot \hat{\vec{r}}_{i})(\hat{\vec{\mu}}_{i} \cdot \hat{\vec{r}}_{i})}{|\hat{\vec{r}}_{i}|^{5}}$$

$$\hat{\sigma}_{i}^{+}$$
..... creation-
 $\hat{\sigma}_{i}$ annhilation- $\}$ operators for the *i*-th TLS

- Bath parameters:
 - $\boldsymbol{\epsilon}$ energy of the bath dipoles
 - η parameter for the nearest-neighbourinteraction of the bath dipoles

from EELS or CI-calculations

Surrogate Hamiltonian Method Excited state dynamics

Surrogate Hamiltonian Method Excited state dynamics

Resonance lifetimes obtained agree with resonance liftetimes in previous stochastic wave packet calculations

Achievement: ab initio simulation of surface photochemistry including non-adiabatic decay

Optimal Control of Quantum Dissipation

Minimization of dissipation by optimizing external field Time-dependent OCT

Maximize functional J, i.e. $\delta J = 0$

$$J = \int_{0}^{T} dt \left\langle \psi(t) \middle| \hat{\Theta}_{t} \middle| \psi(t) \right\rangle - \alpha \int_{0}^{T} dt \frac{\varepsilon^{2}(t)}{s(t)}$$
$$-2\Im \left[\int_{0}^{T} dt \left\langle \lambda(t) \middle| i \frac{\partial}{\partial t} - [\hat{H} - \hat{\mu}\varepsilon(t)] \middle| \psi(t) \right\rangle \right]$$

Optimal Control of Quantum Dissipation

Minimization of dissipation by optimizing external field Time-dependent OCT

Pulse design equations:

$$i\frac{d}{dt}|\psi(t)\rangle = (\hat{H} - \hat{\mu}\epsilon(t))|\psi(t)\rangle$$

$$|\psi(0)\rangle = |\phi\rangle \qquad \hat{\Theta}_{t} = tr_{B}\{|\phi_{ref}(t)\rangle\langle\phi_{ref}(t)|\} \otimes \hat{I}_{B}$$

$$i\frac{d}{dt}|\lambda(t)\rangle = (\hat{H} - \hat{\mu}\epsilon(t))|\lambda(t)\rangle - i\hat{\Theta}_{t}|\psi(t)\rangle$$

$$\varepsilon(t) = -\frac{\sigma(t)}{\alpha} \Im \langle \lambda(t) | \hat{\mu} | \Psi(t) \rangle$$

Optimal Control of Quantum Dissipation

Minimization of dissipation by optimizing external field **Time-dependent OCT** no dissipation 0.99 0.98 minimized dissipation 0.97 $\langle \psi | \Theta | \psi \rangle$ 0.96 0.95 0.94 0.93 full dissipation 0.92 15 40 45 20 25 30 35 50 time (au)

Acknowledgements

<u>Carl von Ossietzky University</u> <u>Oldenburg</u>

Funding

German Science Foundation German Israeli Foundation Volkswagen Foundation Hanse-Wissenschaftskolleg Fonds der Chemischen Industrie Alexander von Humboldt foundation High-Performance Computing Center Stuttgart

Theoretical Chemistry

Erik Asplund, Matthias Mehring, Heiko Haman , Wai Leung Yim Jan Mitschker, Imed Mehdaoui

Hideaki Aizawa*, Stefan Borowski*, Sören Dittrich*, Amel Laref*, Christiane Koch*, Dominik Kröner*, Merle Krueger*, Doron Lahav*, Michail Pykavy*, Stephan Thiel* (*former members)