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Why laser-driven ion accelerators?
● very short laser pulses (10's-100's fs) of a high intensity (Iλ2 

>1018 W/cm2μm-2) => electron motion in laser fields becomes 
relativistic => ions can be accelerated to MeV energies on a 
very short distance (several μm) by electrostatic fields (≈1012 
V/m) generated by electrons

● conventional particle accelerators – the strength of 
accelerating fields ≈108 V/m

● applications: medicine (proton/hadrontherapy, PET, ...), 
radiography, neutron sources (imaging), transmutation of 
nuclear materials, fast ignition, ...

● problems: high energy and large flux of ions, monoenergetic 
beams, reproducibility, reliability



  

Ion acceleration mechanisms
● TNSA – target normal sheath acceleration
● radiation pressure acceleration (RPA), laser 

break-out afterburner (BOA), ... 

 

 accelerated ions – usually protons from hydrocarbon or 
water deposits on the foil surface



  

How to increase the efficiency of 

TNSA mechanism?

(enhancement of maximum proton energy, 

laser-to-proton energy conversion efficiency, 

reduction of proton beam divergence)



  

Recirculation of hot electrons in 
longitudinal direction

● thin foils – recirculation of electrons forth and back

A. J. Mackinnon et al., PRL 88, 215006 (2002)
Y. Sentoku et al., Phys. Plasmas 10, 2009 (2003)



  

Transverse refluxing of hot electrons
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L

velocity of transverse sheath spread ≈ c
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J. Limpouch et al., Laser Part. Beams 26, 225 (2008)

P. McKenna et al., PRL 98, 
145001 (2007)



  

Experiments with thin Au foils at LULI

(2 μm)

● laser pulse duration 400 fs, frequency-doubled and filtered at 
529 nm in order to enhance its temporal contrast, s-polarized

● the laser was focused to ~6 μm (FWHM), at 45° incidence, 
and at the center of Au targets

● laser energy in focal spot E
L
~7 J, peak intensity 

I~2×1019W.cm-2



  

Enhancement of maximum proton energy and 
laser-to proton energy conversion efficiency

● proton energy and conversion efficiency increases starting from 
target surface area of ~ 3-4×104 µm2, corresponding to transverse 
target diameter D

S
<170-200 µm

● conversion efficiency calculated for protons with E
k
>1.5 MeV



  

Angular distribution of accelerated protons
● (a) azimuthally averaged angular proton dose profiles extracted from RCFs 

and normalized to E/E
max

~ 0.6 for two targets of different surface area

● (b) FWHM of angular transverse profiles for all proton energies

no
rm

al
iz

ed
 d

os
e



  

2D particle-in-cell simulations

Figure: hot electron tem-
perature component in 
the perpendicular direc-
tion to the target surface 
derived from simulated 
energy spectra of hot 
electrons beyond the 
laser focal spot in sever-
al time moments

Simulation parameters: λ=0.6 μm, τ
L
=80 fs, a

0
=2.5, n

e
=20n

crit

sizes max. energy conv. efficiency
smaller foil 20λx2λ 12 MeV 5.5%
larger foil 80λx2λ 10 MeV 3.5%

laser



  

smaller vs. larger foil
● smaller foil  D

s 
/(cτ

L
) ≈ 1/2  D

s 
- transverse target size,  

(cτ
L
)

  
- spatial laser pulse length

h – target thickness      h<<cτ
L

 vt
hot 

– average transverse spread 
velocity of hot electrons
vt

hot
≈ 0.7 c ( ≈ 0.2 μm/fs)

laser laser

smaller foil larger foil

spatial distributions of protons

● larger foil  D
s 
/(cτ

L
) ≈ 2

electrons reflected from foil edges mix 
with newly heated electrons, more ho-
mogeneous hot electron sheath



  

Conclusions
● experiment at LULI (foils of the same thickness and various 

surface) 

– threefold increase of the maximum energy, increase of the 
conversion efficiency about an order of magnitude

– proton beam divergence is reduced about two times
● PIC simulations 

– the increase in maximum energy and conversion efficiency is 
due to hot electrons reflected back from foil edges which mix 
together with newly accelerated electrons behind the laser focal 
spot 

– the acceleration of protons is more uniform in the case of 
smaller foil due to more homogeneous hot electron sheath



  

Thank you for your attention
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