VACUUM PAIR PRODUCTION BY OPTICAL LASER COLLIDERS

Gerd Röpke (Rostock University, Germany)

- Introduction: Schwinger Effect
- Kinetic formulation of pair production
- Application to pair production in subcritical laser fields
- \bullet Experimental verification of e^+e^- pair density
- Astra-Gemini Laser experiment: below the Schwinger limit
- ELI: towards the Schwinger limit and beyond QED
- Role of Decoherence? Observe π^{\pm} production in its μ^{\pm} decay pattern !

Collaboration:

David Blaschke (Univ. Wroclaw, Poland & JINR Dubna, Russia) Gianluca Gregori (Univ. Oxford & Rutherford Appleton Lab, UK) Craig Roberts (Argonne National Laboratory, USA) Sebastian Schmidt (Forschungszentrum Jülich, Germany) Alexander Prozorkevich, Stanislav Smolyansky, Alexander Tarakanov (Saratov Univ., Russia)

Recent review: Eur. Phys. J. D 55, 341 (2009); arXiv:0811.3570 [physics.plasm-ph]

PAIR CREATION IN STRONG ELECTROMAGNETIC FIELDS

- Magnetars: $B \sim 10^{15} G \implies$ Problem: unclear conditions!
- Ultra-Peripheral Heavy Ion Coll.

ARTIST VIEW OF A MAGNETAR (NASA)

- ELI: Optical \rightarrow X-Ray @ 1 EW: $I_0 \sim 10^{25} \text{ W/cm}^2 \rightarrow I_{CHF} \sim 10^{36} \text{ W/cm}^2$
 - + Long lifetime: $\tau \sim 10^{-15} \dots 10^{-18} \text{ s} \gg 10^{-22} \text{ s}$
 - + Condition for pair creation: $E^2 - B^2 \neq 0$, (crossed lasers)

SCHWINGER EFFECT: PAIR CREATION IN STRONG FIELDS

Pair creation as barrier penetration in a strong constant field

Schwinger result (rate for pair production)

$$\frac{dN}{d^3xdt} = \frac{(eE)^2}{4\pi^3} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left(-n\pi \frac{E_{\text{crit}}}{E}\right)$$

• To "materialize" a virtual e⁺e⁻ pair in a constant electric field *E* the separation *d* must be sufficiently large

$$eEd = 2mc^2$$

 \bullet Probability for separation d as quantum fluctuation

$$P \propto \exp\left(-\frac{d}{\lambda_c}\right) = \exp\left(-\frac{2m^2c^3}{e\hbar E}\right) = \exp\left(-\frac{2E_{\text{crit}}}{E}\right)$$

• Emission sufficient for observation when $E \sim E_{\rm crit}$

$$E_{\rm crit} \equiv \frac{m^2 c^3}{e\hbar} \simeq 1.3 \times 10^{18} {\rm V/m}$$

• For time-dependent fields: Kinetic Equation approach from Quantum Field Theory

J. Schwinger: "On Gauge Invariance and Vacuum Polarization", Phys. Rev. 82 (1951) 664

KINETIC THEORY FROM NONEQUILIBRIUM QED I

- Many-particle QED for radiative processes in plasmas with relativistic electrons and nonrelativistic heavy particles
- no "golden rule", no "collisions" vs. "asymptotic free states"
- "virtual" photons (interaction between particles) *vs.* "resonant" photons (propagate, weakly damped), the same for electrons
- Density matrix theory (correlated initial state) *vs.* real-time Green's functions method (quasiparticle approach for weakly coupled plasmas)
- Transport and mass-shell equations for the fluctuations of the electromagnetic field
- Correlation functions can be decomposed into sharply peaked (non-Lorentzian) part that describe resonant (propagating) photons and off-shell parts corresponding to virtual photons

$$a_{\rm res}(X,k) = \frac{4(k_0\Gamma)^3}{\left[(k^2 - {\rm Re}\pi^+)^2 + (k_0\Gamma)^2\right]^2}$$

- Analogous decomposition for the correlation function of relativistic electrons
- Derivation of kinetic equations for the resonant part with finite spectral width
- Off-shell parts are essential to recover vacuum QED

V.G. Morozov, G. Röpke: "Kinetic Theory of Radiation in Nonequilibrium Relativistic Plasmas" Ann. Phys. (N.Y.) 324, 1261 (2009)

KINETIC THEORY FROM NONEQUILIBRIUM QED II

Path-ordered Green's function for Dirac field operators

$$G(\underline{1}\,\underline{2}) = -i \left\langle T_C[S\,\psi_I(\underline{1})\bar{\psi}_I(\underline{2})] \right\rangle / \left\langle S \right\rangle, \qquad S = T_C \exp\left\{-i \int d\underline{1}\,\hat{A}_I^{\mu}(\underline{1})\,J_{\mu}^{(\text{ext})}(\underline{1})\right\},$$

and for the (transverse) fluctuations of the electromagnetic fields

$$D^{\mu\nu}(\underline{1\,2}) = \frac{\delta A^{\mu}(\underline{1})}{\delta J^{(\text{ext})}_{\nu}(\underline{2})} = -i\langle T_C\,\Delta \hat{A}^i(\underline{1})\,\Delta \hat{A}^j(\underline{2})\rangle$$

Equations of motion, self-energy, vertex functions and polarization matrix Wigner transform (X, k) and decomposition (d_s^{\gtrless}, d_s^+) differences and sums: transport and mass shell equations

$$\{k^2 - \operatorname{Re} \pi_s^+, d_s^\gtrless\} + \{\operatorname{Re} d_s^+, \pi_s^\gtrless\} = i (\pi_s^> d_s^< - \pi_s^< d_s^>), \\ \{\operatorname{Im} \pi_s^+, d_s^\gtrless\} + \{\operatorname{Im} d_s^+, \pi_s^\gtrless\} = 2 (k^2 - \operatorname{Re} \pi_s^+) (d_s^\gtrless - |d_s^+|^2 \pi_s^\gtrless), \\ \{k^2 - \pi_s^\pm, d_s^\pm\} = 0, \qquad (k^2 - \pi_s^\pm) d_s^\pm = 1$$

with the four-dimensional Poisson bracket

$$\{F_1(X,k),F_2(X,k)\} \ = \ \frac{\partial F_1}{\partial X^\mu}\frac{\partial F_2}{\partial k_\mu} - \frac{\partial F_1}{\partial k^\mu}\frac{\partial F_2}{\partial X_\mu}$$

V.G. Morozov, G. Röpke: "Kinetic Theory of Radiation in Nonequilibrium Relativistic Plasmas" Ann. Phys. (N.Y.) 324, 1261 (2009)

KINETIC THEORY FROM NONEQUILIBRIUM QED III

Resonant spectral function

$$\widetilde{a}_{s}(X,k) = i\left(\widetilde{d}_{s}^{>} - \widetilde{d}_{s}^{<}\right) = \frac{4\left(k_{0}\Gamma_{s}\right)^{3}}{\left[\left(k^{2} - \operatorname{Re}\pi_{s}^{+}\right)^{2} + \left(k_{0}\Gamma_{s}\right)^{2}\right]^{2}}$$

Photon distribution function

$$\widetilde{d}_{s}^{<}(X,k) \; = \; -i\, \widetilde{a}_{s}(X,k) N_{s}^{<}(X,k), \quad \widetilde{d}_{s}^{>}(X,k) = -i\, \widetilde{a}_{s}(X,k) N_{s}^{>}(X,k),$$

where

$$N_s^>(X,k) - N_s^<(X,k) = 1$$

Kinetic equation for resonant photons

$$\widetilde{a}_{s}\left[\left\{k^{2} - \operatorname{Re}\pi_{s}^{+}, N_{s}^{<}\right\} - \frac{k^{2} - \operatorname{Re}\pi_{s}^{+}}{k_{0}\Gamma_{s}}\left\{k_{0}\Gamma_{s}, N_{s}^{<}\right\} - i\left(\pi_{s}^{>}N_{s}^{<} - \pi_{s}^{<}N_{s}^{>}\right)\right] = 0$$

Distribution fuctions in spinor space

$$\widetilde{G}^{\gtrless}(X,p) = \mp \frac{i}{2} \left(\widetilde{\mathcal{A}}(X,p) \,\mathcal{F}^{\gtrless}(X,p) + \mathcal{F}^{\gtrless}(X,p) \,\widetilde{\mathcal{A}}(X,p) \right),$$

$$\mathcal{F}^{>}(X,p) + \mathcal{F}^{<}(X,p) = I$$

V.G. Morozov, G. Röpke: "Kinetic Theory of Radiation in Nonequilibrium Relativistic Plasmas" Ann. Phys. (N.Y.) 324, 1261 (2009)

KINETIC FORMULATION OF PAIR PRODUCTION

Kinetic equation for the single particle distribution function $f(\bar{P},t) = \langle 0|a^{\dagger}_{\bar{P}}(t)a_{\bar{P}}(t)|0 > 0$

 $\frac{df_{\pm}(\bar{P},t)}{dt} = \frac{\partial f_{\pm}(\bar{P},t)}{\partial t} + eE(t)\frac{\partial f_{\pm}(\bar{P},t)}{\partial P_{\parallel}(t)}$ $= \frac{1}{2}\mathcal{W}_{\pm}(t)\int_{-\infty}^{t} dt'\mathcal{W}_{\pm}(t')[1\pm 2f_{\pm}(\bar{P},t')]\cos[x(t',t)]$

Kinematic momentum $\bar{P} = (p_1, p_2, p_3 - eA(t))$,

$$\mathcal{W}_{-}(t) = \frac{eE(t)\varepsilon_{\perp}}{\omega^2(t)} ,$$

where $\omega(t) = \sqrt{\varepsilon_{\perp}^2 + P_{\parallel}^2(t)}$, with $\varepsilon_{\perp} = \sqrt{m^2 + \bar{p}_{\perp}^2}$ and $x(t', t) = 2[\Theta(t) - \Theta(t')]$.

$$\Theta(t) = \int_{-\infty}^{t} dt' \omega(t')$$

Schmidt, Blaschke, Röpke, et al: Non-Markovian effects in strong-field pair creation Phys. Rev. D 59 (1999) 094005 Constant field: Schwinger limit reproduced

$$f(\tau \to \infty) = \exp\left(\frac{-\pi}{E_0}\right)$$

PAIR PRODUCTION IN SUBCRITICAL FIELDS (I)

Kinetic formulation for $E(t) = -\dot{A}(t)$ in the Hamiltonian gauge $A^{\mu} = (0, 0, 0, A(t))$

$$\frac{df(\mathbf{p},t)}{dt} = \frac{1}{2}\Delta(\mathbf{p},t)\int_{t_0}^t dt' \,\Delta(\mathbf{p},t') \left[1 - 2f(\mathbf{p},t')\right] \times \cos\left[2\int_{t'}^t dt_1 \,\varepsilon(\mathbf{p},t_1)\right],$$

where

$$\begin{split} \Delta(\mathbf{p},t) &= eE(t)\frac{\sqrt{m^2 + p_{\perp}^2}}{\varepsilon^2(\mathbf{p},t)}, \\ \varepsilon(\mathbf{p},t) &= \sqrt{m^2 + p_{\perp}^2 + [p_3 - eA(t)]^2} \end{split}$$

The particle number density

$$n(t) = 2 \int \frac{d\mathbf{p}}{(2\pi)^3} f(\mathbf{p}, t)$$

Number of e⁺e⁻ pairs in the volume λ^3 for a weak field (Jena Ti:AlO₃ laser, solid line) and for near-critical field $E_m/E_{\rm crit} = 0.24$, $\lambda = 0.15$ nm (X-FEL, dashed line).

$$E(t) = E_m \sin \omega t, \quad 0 \le t \le NT, \quad T = \frac{2\pi}{\omega}$$

Gaussian wave packet

$$E(t) = E_m e^{-(t/\tau_L)^2} \sin \omega t.$$

Wavelength dependence of the mean density of e^+e^- pairs (solid line) and their annihilation rate (dotted line). $E = 3 \times 10^{-5} E_{cr}$. Wavelength dependence of the mean density of e^+e^- pairs for different E/E_{cr}

Project: G. Gregori et al. (2008)

at RAL Astra-Gemini Laser

 $\tau = \frac{(p_1 + p_2)^2}{4m^2} = \frac{1}{4m^2} [(\varepsilon_1 + \varepsilon_2)^2 - (\mathbf{p}_1 + \mathbf{p}_2)^2].$

SILMI WORKSHOP, MUNICH, MARCH 2010

Time dependence of the pair density (left) and the number of annihilations (right) in the volume λ^3 for a periodic field (T - period) with $E_m = 10^{15}$ V/cm and $\lambda = 800$ nm for the different particle species. Laser intensity $3 \cdot 10^{27}$ W/cm².

$\pi^+\pi^-$ pair production in subcritical laser fields (II)

Pion pair creation kinetics, including decay into muons:

$$\frac{\partial f_{\pi}(\mathbf{p},t)}{\partial t} = \frac{1}{2} \Delta_{\pi}(\mathbf{p},t) \int_{t_0}^{t} dt' \Delta_{\pi}(\mathbf{p},t') \cos \theta_{\pi}(\mathbf{p},t',t) - f_{\pi}(\mathbf{p},t) \int d\mathbf{q} d\mathbf{k} w(\mathbf{p},\mathbf{q},\mathbf{k},t),$$

$$\frac{\partial f_{\mu}(\mathbf{p},t)}{\partial t} = \frac{1}{2} \Delta_{\mu}(\mathbf{p},t) \int_{t_0}^{t} dt' \Delta_{\mu}(\mathbf{p},t') \cos \theta_{\mu}(\mathbf{p},t',t) + \int d\mathbf{q} d\mathbf{k} w(\mathbf{q},\mathbf{p},\mathbf{k},t) f_{\pi}(\mathbf{q},t),$$

Stochastic pion decay with rate $w(\mathbf{p},\mathbf{q},\mathbf{k},t)$.

$$w(\mathbf{p}, \mathbf{q}, \mathbf{k}, t) \approx w(\mathbf{p}, \mathbf{q}, \mathbf{k}) = \frac{1}{2} \left(\frac{Gm_{\mu}F_{\pi}}{2\pi} \right)^2 \frac{q \cdot k}{\varepsilon_p \varepsilon_q \varepsilon_k} \delta^{(4)}(p - q - k),$$

Muons seen by a detector with the time resolution δt

$$\delta n_{\mu}(t) \approx \frac{\delta t}{\tau_{\pi}} n_{\pi}(t) = \frac{\delta t}{\tau_{\pi}} \int_{t_0}^t dt' e^{(t'-t)/\tau_{\pi}} s_{\pi}(t')$$

Number of muons as a function of the laser intensity at an optical wavelength $\lambda \sim 800$ nm.

Time dependence of the number of decay

muons produced in a volume λ^3 , seen in a muon detector with time resolution $\delta t \sim 0.1$ fs

Blaschke, Prozorkevich, Roberts, Röpke, Schmidt, Smolyansky; in preparation (2010)

ACCUMULATION EFFECT IN NEAR-CRITICAL FIELDS

Particle number density $n(T; E_0) = a_0(E_0) \sin^2(2\pi T) + \rho(T, E_0)T$, $T = t/\lambda$

Results are nicely fitted with

 $\rho(T, E_0) = \rho(E_0) + \rho'(E_0)T$

For $E = 0.5 \ E_0$, $a_0 = 1.2 \times 10^{-11} \ \text{fm}^{-3}$, $\rho = 5.4 \times 10^{-12} \ \text{fm}^{-3}$ /period, $\rho'/\rho = 0.0033$ /period.

Comparison with Schwinger rate

$$\rho = a \frac{m^4 \lambda}{4\pi^3} \left[\frac{E_0}{E_{cr}}\right]^2 e^{-b\pi E_{cr}/E_0}$$

Accumulation rate $\rho(0, E_0)$ (solid), Schwinger rate a = 1, b = 1 (dashed), a = 0.305, b = 1.06 (dot-dashed) Attention:

 $E_0 \sim 0.35 \ E_{cr}$ backreactions become important!

Roberts, Schmidt, Vinnik: "Quantum effects with an X-Ray Free-Electron Laser", Phys. Rev. Lett (2002) 153901

EXPERIMENT FOR SUBCRITICAL VACUUM PAIR PRODUCTION

Project: G. Gregori et al. at the RAL Astra-Gemini laser facility \rightarrow Summer 2010

ARTICLE IN PRESS

High Energy Density Physics xxx (2009) 1-5

A proposal for testing subcritical vacuum pair production with high power lasers

101:10.1016/j.hedp.2009.11.001 G. Gregori^{a,b,*}, D.B. Blaschke^{c,d}, P.P. Rajeev^b, H. Chen^e, R.J. Clarke^b, T. Huffman^a, C.D. Murphy^a, A.V. Prozorkevich^f, C.D. Roberts^g, G. Röpke^h, S.M. Schmidt^{i,j}, S.A. Smolyansky^f, S. Wilks^e, R. Bingham^b

*Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK ^bRutherford Appleton Laboratory, Chilton, Didcot OX II 0QX, UK ^cInstitute for Theoretical Physics, University of Wroclaw, 50-204 Wrodaw, Poland ^a Bogoliubov Laboratory for Theoretical Physics, Joint Institute for Nuclear Research, RU-141980, Dubna, Russia *Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA Saratov State University, RU-410026, Saratov, Russia *Physics Division, Argonne National Laboratory, Argonne, IL 60439-4843, USA ^hInstitut f
ür Physik, Universit
ät Rostock, Universit
ätsplatz 3, 18051 Rostock, Germany Fechnische Universität Dortmund, Fakultät Physik & DELTA, 44221 Dortmund, Germany ¹Forschungszentnum Jülich GmbH, 52428 Jülich, Germany

PAIR PRODUCTION AT RAL: ASTRA GEMINI LASER

Part of an experimental campaign to explore nonperturbative and nonequilibrium QFT regimes: (1) Pair production, (2) Nonlinear mixing, (3) Unruh effect

(1-A) Pair production in high-Z foils

(1-B) Vacuum pair production with different schemes:

- vacuum polarization
- refraction index
- $\bullet \, \gamma \gamma$ coincidence
- ...

KINETICS OF THE $E^+E^-\gamma$ plasma in a strong laser field

The photon correlation function is defined as

$$F_{rr'}(\mathbf{k},\mathbf{k}',t) = \langle A_r^+(\mathbf{k},t)A_{r'}^-(\mathbf{k}',t)\rangle ; \quad A_\mu(\mathbf{k},t) = A_\mu^{(+)}(\mathbf{k},t) + A_\mu^{(-)}(-\mathbf{k},t).$$

Lowest truncation of BBGKY hierarchy \rightarrow photon KE for zero initial condition

$$\begin{split} \dot{F}(\mathbf{k},t) &= -\frac{e^2}{2(2\pi)^3 k} \int d^3 p \int_{t_0}^t dt' K(\mathbf{p},\mathbf{p}-\mathbf{k};t,t') [1+F(\mathbf{k},t')] \\ & [f(\mathbf{p},t') + f(\mathbf{p}-\mathbf{k},t') - 1] \cos\{\int_{t'}^t d\tau [\omega(\mathbf{p},\tau) + \omega(\mathbf{p}-\mathbf{k},\tau) - k]\}, \end{split}$$

Markovian approximation; averaging the kernel: $K(\mathbf{p}, \mathbf{p} - \mathbf{k}; t, t') \rightarrow K_0 = -5$ Subcritical field case: $E \ll E_c$, lead to ($\delta = 2m - k$, frequency mismatch)

$$F({\bf k},t) = \frac{5e^2n(t)}{2k\delta^2} \ , \ n(t) = 2\int d^3p f({\bf p},t)/(2\pi)^3$$

Photon distribution in the optical region $k \ll m$ is characteristic for the flicker noise $\boxed{F(k) \sim 1/k}$

D.B. Blaschke et al., Contr. Plasma Phys. 49, 602 (2009); arxiv:0912.0381 [physics.plasm-physics]

CHALLENGES OF FUTURE LASERS FOR THE SCHWINGER EFFECT

- First experimental tests to theories of pair production, e.g. kinetic approach
- Simplest laser field model predicts production of dense electron-positron plasma in the focus of counter-propagating laser fields
- Observable manifestations testable, e.g., at ASTRA-Gemini:
 - several gamma-pairs per laser pulse
 - refraction index measurable by intereference with test beam
 - higher harmonics generation, in particular 3^{rd}
- Towards/Beyond Schwinger limit, e.g., at ELI:
 - Quantum statistics: Pauli-Blocking/ Bose Condensation; Backreactions
 - Pion production limit: signalled by muons
 - Pion condensation (?) and quark-gluon-plasma formation ...
- Laser acceleration of ion beams (see arxiv:0811.3570 [physics.plasm-ph])

Thanks to: D. Habs (Munich), G. Mourou (Paris), R. Sauerbrey (Rossendorf)

INTENSE THEORY-EXPERIMENT INTERACTION ...

How to 'see' e^+e^- pairs @ optical lasers (III)

Measurement of refraction index

Interference condition: $D = \lambda_p/2$ Refraction index: $n = 1/\sqrt{1 + \eta^2[(2 + \eta^2)/(1 + \eta^2)]}$ Langmuir frequency ω_L : $\eta = \omega_L/\omega_p = 10^4 \sqrt{\rho_{e+e-}[cm^{-3}]}$ Probe frequency: $\omega_p = 10 \omega_0$

Condition fulfilled for: $\rho_{e+e-} = 10^{23} \text{ cm}^{-3}$, i.e. $I \approx 10^{23} \text{ W/cm}^2$ Angular dependence testable: number of 'pancakes' crossed varies with incidence angle: from 3-4 to 20-30

Suggestion: R. Sauerbrey; Estimate: Blaschke, Prozorkevich, Smolyansky, in prep.

COMPARISON WITH IMAGINARY TIME METHOD

V.S. Popov, Phys. Lett. A 298 (2002) 83

- imaginary time method (time indep.)
- number of pairs only after full period T
- no distribution function

$$\gamma \ll 1, \ \gamma = \frac{\hbar\omega}{mc^2} \frac{E_{cr}}{E}$$

$$N(\lambda^3 T) \sim \left(\frac{m}{\nu}\right)^4 \left(\frac{E}{E_{cr}}\right)^{5/2} \exp\left[-\frac{\pi E_{cr}}{E}\right]$$
 $\gamma \gg 1$

$$N(\lambda^3 T) \approx 2\pi \left(\frac{m}{\nu}\right)^{3/2} \left(\frac{e}{4\gamma}\right)^{2m/\nu}$$

Very large differences for $E \ll E_{cr}$

Here: Grib, Mamaev, Mostepanenko (1988)

- Bogoliubov transformation (time dep.)
- pair number during field evolution
- distribution function

 $\gamma \ll 1$

$$\lambda^{3} n_{r} \sim \left(\frac{m}{\nu}\right)^{4} \left(\frac{E}{E_{cr}}\right)^{2} \exp\left[-1.05\frac{\pi E_{cr}}{E}\right]$$

$$\gamma \gg 1 \text{ (mean)}$$

$$\lambda^{3} \langle n \rangle \sim \left[\frac{(eE_{m})}{m^{2}}\right]^{2} \left[\frac{m\lambda}{2\pi}\right]^{3}, \qquad \frac{n_{r}}{\langle n \rangle} \sim \frac{\omega^{2}}{m^{2}}$$

$$\gamma \gg 1 \text{ (residual)}$$

$$n_{r} \sim \left(\frac{m}{L}\right)$$

SILMI WORKSHOP, MUNICH, MARCH 2010

 $\langle \nu \rangle$

QED with High Power Lasers

Pair production experiment

Dr Gianluca Gregori

Oxford University and Rutherford Appleton Laboratory

List of collaborators (more to add...)

This is the first attempt to observe measurable QED effects with high power lasers – need to include all interested organizations

If you are not in the proposal, just let me know and you'll be included!

G Gregori^{1,2}, P. P. Rajeev², D Neely², P Norreys², R Bingham^{2,3}, DB Blaschke⁴, G Brodin⁵, RJ Clarke², RG Evans^{2,6}, SH Glenzer⁷, T Heinzl⁸, T Huffman¹, C Joshi⁹, J Lundin⁵, M Marklund⁵, AV Prozorkevich¹⁰, G Roepke¹¹, SJ Rose⁶, CD Roberts¹², R Sauerbrey¹³, SA Smolyansky⁹, G Tynan¹⁴, JL Collier^{2,15}

¹ Department of Physics, University of Oxford, Oxford OX1 3PU, UK; ² Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK;

³ Department of Physics, University of Strathclyde, Glasgow, UK; ⁴ Institute for Theoretical Physics, University of Wroclaw, 50-204 Wroclaw, Poland; ⁵ Department of Physics, Umea University, Sweden; ⁶ Department of Physics, Imperial College, London SW7 2BW, UK; ⁷ Lawrence Livermore National Laboratory, Livermore CA 94551, USA; ⁸ School of Mathematics & Statistics, University of Plymouth, Plymouth PL4 8AA, UK; ⁹University of California, Los Angeles CA 90095, USA; ¹⁰Saratov State University, RU-410026, Saratov, Russia; ¹¹Institute of Physics, University of Rostock, D-18051 Rostock, Germany; ¹²Physics Division, Argonne National Laboratory, Argonne IL 60439, USA,

¹³Technische Universität Dresden, D-01328, Germany, ¹⁴Department of Mechanical Engineering, University of California, San Diego CA 92093, USA ¹⁵Department of Physics, University of Swansea, SA2 8PP Swansea, UK

OXFORD QED with high power lasers

- The proposed work is part of a large experimental campaign aimed at the exploitation of high power lasers to explore non-perturbative and non-equilibrium QFT regimes
 - Pair production: 1st experiment scheduled for winter 2010. Simplest beam arrangement and feasible on the current Gemini system.
 - Nonlinear mixing: vacuum polarization via four-wave mixing using a nonlinear stimulated process. It is possible to show that by interacting three beams into a high vacuum region, a fourth beam of photons with unique wavelength will be generated.
 - Unruh radiation: interaction of a high intensity laser with relativistic electrons (> 1 GeV) can access regimes where the electrons, in their rest frame, experience a ultra-high intensity field such as the one found at the event horizon of a black hole.

OXFORD QED with high power lasers

→ High risk experiments (!) but high payoff from their success

→ Pair production experiment: de-risking strategy

- Measure vacuum pair production with a variety of schemes (vacuum polarization / γ - γ co-incidence detection)
- Pair production is high-Z foils (already demonstrated)

Pair production in high-Z foils XFORD

electron-beam ♀ positrons a) $e^- + Z \rightarrow 2 e^+ e^- + Z$ b) γ-ray ♀ positrons $\gamma + Z \to e^+ e^- + Z$

UNIVERSITY OF

→ Detailed modelling of the experiment is required:

- Numerical calculations of pair number vs foil thickness
- Optimization w.r.t. pulse length and laser intensity
- Polarization dependence?

OXFORD Pair production in vacuum

- Need to estimate the quality of vacuum (!) Can we produce ultrahigh vacuum?
 - Detailed calculations are required in order to determine residual effect of residual atoms
 - Can we use the laser pre-pulse (nanosecond pedestal) to expel the ions from the laser focal spot?

Simple estimate: assuming 100 residual atoms in the focal spot (p~1 mTorr), we expect 0.01 pairs per laser shot (Heitler, 1954)

UNIVERSITY OF

Pair production in vacuum – simple theory

- The basic of this process is multi-body interaction of a large number of optical photons non-perturbative process
- Described within the non-equilibrium quantum field theory framework: quantum Vlasov equation

$$\frac{df_k(t)}{dt} = \frac{\dot{\Omega}_k}{2\Omega_k} \int_{-\infty}^t dt' \frac{\dot{\Omega}_k}{2\Omega_k} (t') \left[1 - f_k(t')\right] \cos\left[2\int_{t'}^t d\tau \Omega_k(\tau)\right]$$
$$\Omega_k^2 = (\mathbf{k} - e\mathbf{A})^2 + m^2$$
$$N_{ep}(t) = 2V \int \frac{d^3k}{(2\pi)^3} f_k(t)$$

→ Which is the physical meaning of the time-dependent particle number?

OXFORD Pair production in vacuum – simple theory

The particle number does not commute with the Hamiltonian – it is not a well defined quantity!

$$\Delta E \Delta t = \Delta (N_{ep}m) \Delta t \sim 1$$
$$\rightarrow \Delta N_{ep} \sim 1/(m\Delta t)$$

- Hence, the particle number is well defined at asymptotic times (t very large) or for classical particles (large mass)
- In our case, we need to account for the change of particle number during the time the laser is on...

$$\Delta N_{ep} \sim \frac{1}{m\Delta t} + \left| \frac{dN_{ep}}{dt} \right| \Delta t$$
$$\rightarrow \Delta t \sim \frac{1}{\left(m \left| \frac{dN_{ep}}{dt} \right| \right)^{1/2}} \sim \frac{m}{eE}$$

OXFORD Pair production in vacuum – simple theory

- Similarly, particles are produced in pairs (i.e., they are initially entangled)
 this is elucidated by the cosine term in the quantum Vlasov equation
- In the case of spatially homogeneous weak fields the disentanglement time is

$$\Delta t \sim \frac{1}{\Omega_k} \sim \frac{1}{m}$$

For the proposed
Gemini experiment
$$\left\{ \begin{array}{c} (\Delta t)_{Heisenberg} = \frac{m}{eE} \approx 8.9 \times 10^{-18} s \\ (\Delta t)_{Entanglement} = \frac{1}{m} \approx 1.3 \times 10^{-21} s \end{array} \right.$$

→ Hence, the particle number is well defined during the laser period !

However, are this particles on the mass shell? Experiment is the only way to test the validity of NeqQFT approach

Proposed experiment (YY co-incidence)

- → Solution of the quantum Vlasov equation for idealized (spatially homogeneous and sinusoidal field) gives N_{ep}~6x10⁸ at the peak of the laser pulse and then ~0 after the pulse
- Those pairs can annihilate due to collisions in the laser spot volume, giving Nγγ~7-20 per laser shot
- More precise calculations are needed for the actual laser configuration (beam profile, spatial and temporal overlap...)

 \rightarrow Background level of $\gamma\gamma$ event is ~0.4 per laser shot (measured in-situ)

Predicted signal is significantly above background level

OXFORD Proposed experiment (vacuum polarization)

The presence of electron-positron pairs changes the index of refraction

$$n = \left(1 + \eta^2 + \frac{\eta^2}{1 + \eta^2}\right)^{-1/2}$$
$$\eta^2 = \frac{e^2 N_{ep}/\lambda^3}{\epsilon_0 m \omega^2}$$

 The corresponding reflectivity of the vacuum is

$$R = \left(\frac{1-n}{1+n}\right)^{1/2} \left(\frac{2\pi\lambda_c}{\lambda}\right)^3$$

→ Expect ~5 backscattered photons per laser shot

→ Difficult to distinguish from the noise background but worth to try!